ELVL-2016-0044282 February 24, 2016

> Orbital Debris Assessment for The CubeSats on the JPSS-1 /ELaNa-XIV Mission per NASA-STD 8719.14A

Signature Page

Justin Treptow, Analyst, NASA KSC VA-H1 Cervin Musico Manager, NASA KSC VA-C for

Jason Crusan, Program Executive, NASA HQ HEOMD

Suzanne Aleman, NASA HQ OSMA MMOD Program Executive

Signatures Required for Final Version of ODAR

Terrence W. Wilcutt, NASA Chief, Safety and Mission Assurance

William Gerstenmaier, NASA AA, Human Exploration and Operations Mission Directorate. National Aeronautics and Space Administration

#### John F. Kennedy Space Center, Florida

Kennedy Space Center, FL 32899



ELVL-2016-0044282

Reply to Attn of: VA-H1

February 24, 2016

| TO:   | Scott Higginbotham, LSP Mission Manager, NASA/KSC/VA-C |
|-------|--------------------------------------------------------|
| FROM: | Justin Treptow, NASA/KSC/VA-H1                         |

SUBJECT: Orbital Debris Assessment Report (ODAR) for the ELaNa-XIV Mission

## **REFERENCES**:

- A. NASA Procedural Requirements for Limiting Orbital Debris Generation, NPR 8715.6A, 5 February 2008
- B. Process for Limiting Orbital Debris, NASA-STD-8719.14A, 25 May 2012
- C. Preliminary Mission Analysis For The Delta II 7920-10 / JPSS-1 Spacecraft Mission, ULA-TP-15-096, July 21, 2015.
- D. McKissock, Barbara, Patricia Loyselle, and Elisa Vogel. *Guidelines on Lithiumion Battery Use in Space Applications*. Tech. no. RP-08-75. NASA Glenn Research Center Cleveland, Ohio
- E. *UL Standard for Safety for Lithium Batteries, UL 1642.* UL Standard. 4th ed. Northbrook, IL, Underwriters Laboratories, 2007
- F. Kwas, Robert. Thermal Analysis of ELaNa-4 CubeSat Batteries, ELVL-2012-0043254; Nov 2012
- G. Range Safety User Requirements Manual Volume 3- Launch Vehicles, Payloads, and Ground Support Systems Requirements, AFSCM 91-710 V3.
- H. HQ OSMA Policy Memo/Email to 8719.14: CubeSat Battery Non-Passivation, Suzanne Aleman to Justin Treptow, 10, March 2014

The intent of this report is to satisfy the orbital debris requirements listed in ref. (a) for the ELaNa-XIV auxiliary mission launching in conjunction with the JPSS-1 primary payload. It serves as the final submittal in support of the spacecraft Safety and Mission Success Review (SMSR). Sections 1 through 8 of ref. (b) are addressed in this document; sections 9 through 14 fall under the requirements levied on the primary mission and are not presented here.

The following table summarizes the compliance status of the ELaNa-XIV auxiliary payload mission flown on JPSS-1. The 5 CubeSats comprising the ELaNa-XIV mission are fully compliant with all applicable requirements.

| Requirement | <b>Compliance Assessment</b> | Comments                                                                  |
|-------------|------------------------------|---------------------------------------------------------------------------|
| 4.3-1a      | Not applicable               | No planned debris release                                                 |
| 4.3-1b      | Not applicable               | No planned debris release                                                 |
| 4.3-2       | Not applicable               | No planned debris release                                                 |
| 4.4-1       | Compliant                    | Minimal risk to orbital<br>environment, mitigated by<br>orbital lifetime. |
| 4.4-2       | Compliant                    | Minimal risk to orbital<br>environment, mitigated by<br>orbital lifetime. |
| 4.4-3       | Not applicable               | No planned breakups                                                       |
| 4.4-4       | Not applicable               | No planned breakups                                                       |
| 4.5-1       | Compliant                    |                                                                           |
| 4.5-2       | Not applicable               |                                                                           |
| 4.6-1(a)    | Compliant                    | Worst case lifetime 13.8 yrs                                              |
| 4.6-1(b)    | Not applicable               |                                                                           |
| 4.6-1(c)    | Not applicable               |                                                                           |
| 4.6-2       | Not applicable               |                                                                           |
| 4.6-3       | Not applicable               |                                                                           |
| 4.6-4       | Not applicable               | Passive disposal                                                          |
| 4.6-5       | Compliant                    |                                                                           |
| 4.7-1       | Compliant                    | Non-credible risk of human casualty                                       |
| 4.8-1       | Compliant                    | No planned tether release<br>under ELaNa-XIV mission                      |

Table 1: Orbital Debris Requirement Compliance Matrix

## Section 1: Program Management and Mission Overview

The ELaNa-XIV mission is sponsored by the Human Exploration and Operations Mission Directorate at NASA Headquarters. The Program Executive is Jason Crusan. Responsible program/project manager and senior scientific and management personnel are as follows:

Buccaneer: Ian Cartwright, Principle Investigator; David Lingard, Project Manager

EagleSat: Gary Yale, Principle Investigator; Clayton Jacobs, Project Manager

GoldenEagle-1: George Corliss, Principle Investigator; Nicholas Haraus, Project Manager

MiRaTA: Kerri Cahoy and William Blackwell, Principle Investigator; Vincent Leslie, Project Manager

RadFXSat: Brian Sierawski , Principle Investigator; Gerald Buxton, Project Manager

| <b>Program Milestone</b>             | Schedule          |
|--------------------------------------|-------------------|
| Task                                 | Date              |
| CubeSat Selection                    | April 2, 2015     |
| CubeSat Build, Test, and Integration | September 1, 2016 |
| MRR                                  | October 4, 2016   |
| CubeSat Integration into P-PODs      | November 7, 2016  |
| CubeSat Delivery to VAFB             | January 9, 2017   |
| Launch                               | Jan 2017          |

## Figure 1: Program Milestone Schedule

The ELaNa-XIV mission will be launched as an auxiliary payload on the JPSS-1 mission on a Delta II 7920-10 launch vehicle from Space Launch Complex 2 West (SLC-2W) at Vandenberg Air Force Base (VAFB). ELaNa-XIV, will deploy 5 pico-satellites (or CubeSats). The CubeSat slotted position is identified in Table 2: ELaNa-XIV CubeSats. The ELaNa-XIV manifest includes: Buccaneer, EagleSat, GoldenEagle-1, MiRaTA and, RadFXSat. The current launch date is in January 20, 2017. The (5) CubeSats will be ejected from a PPOD carrier attached to the launch vehicle, placing the CubeSats in an orbit approximately 440 km X 811 km at inclination of 97.7 deg (ref. (c)).

The CubeSat standard form ranges in sizes from a 10 cm cube to 10 cm x 10cm x 30 cm, with masses from about 1 kg to 4 kg total. The CubeSats have been designed and universities and government agencies and each have their own mission goals.

## Section 2: Spacecraft Description

There are five CubeSats flying on the ELaNa-XIV. The CubeSats will be deployed out of 3 PPODs, as shown in Table 2: ELaNa-XIV CubeSats below.

| PPOD Slot | CubeSat<br>Quantity | CubeSat size                  | CubeSat<br>Names | CubeSat<br>Masses (kg) |
|-----------|---------------------|-------------------------------|------------------|------------------------|
|           |                     | 1U (10 cm X 10 cm X 10.66 cm) | EagleSat         | 1.1                    |
| P-POD #1  | 3                   | 1U (10 cm X 10 cm X 10 cm)    | GoldenEagle-1    | 0.856                  |
|           |                     | 1U (10 cm X 10 cm X 10 cm)    | RadFXSat         | 1.32                   |
| P-POD #2  | 1                   | 3U (10 cm X 10 cm X 32.5 cm)  | Buccaneer        | 3.98                   |
| P-POD #3  | 1                   | 3U (10 cm X 10 cm X 32.4 cm)  | MiRaTA           | 4.19                   |

## Table 2: ELaNa-XIV CubeSats

The following subsections contain descriptions of these 5 CubeSats.

Buccaneer 1.0 - DST Group/UNSW Canberra - 3U+



**Figure 2: Buccaneer Expanded View** 

Buccaneer is a 3U+ CubeSat that will collect High Frequency (HF) signals in space with a 3.2m open-ended bow tie antenna. The objective is to first test the feasibility of such a large antenna in space, and secondly to receive and process signals from Australian Defence's over-the-horizon radars, leading to improved calibration. The first Buccaneer mission that is part of ELaNa-14 is known as the Buccaneer Risk Mitigation Mission (BRMM). The intention is to later launch a second Buccaneer mission, after technical and programmatic risk has been retired during the BRMM.

The Buccaneer mission is being progressed as a partnership between:

- 1. The Defence Science and Technology (DST) Group, part of the Australian Department of Defence, and
- 2. The University of New South Wales (UNSW), Canberra campus.

In addition, the Australian National University (ANU) in Canberra will provide support with environmental stress screening through agreements that they have in place with UNSW Canberra. The National Reconnaissance Office (NRO) is sponsoring launch of the Buccaneer CubeSat.

The HF receiver payload will be designed and manufactured by DST Group. It consists of:

- A large HF antenna housed inside the tuna can of the 3U+ structure (1, 2 &3), including a PCB to support deployment of the antenna, and connection to ground support equipment.
- A front end module to receive the raw HF signal and perform analogue to digital conversion.
- A back end module to store the raw HF data (solid state disks) and perform digital signal processing (Field Programmable Gate Array).
- A KEA GPS unit developed by General Dynamics Corporation (New Zealand), and an associated interface board that produces a low phase noise 120 MHz clock signal for analogue to digital conversion of the received raw HF signal.

- A payload management module that communicates with the spacecraft bus, controls the other payload modules, acts as a time server, and has a watchdog timer, and
- A payload bus adaptor module that interfaces with the CubeSat bus, contains a camera (developed by UNSW Canberra) to confirm correct deployment of the HF antenna, and hosts the space vehicle's magnetometer.

The spacecraft bus will be integrated by Pumpkin Inc. and consists of:

- Pumpkin Solar Panels, ClydeSpace EPS and batteries
- Astronautical Development UHF transceiver and ISISpace UHF antenna
- F-SATI S-Band transmitter and patch antenna
- MAI-400 ADCS unit from Maryland Aerospace Incorporated
- Pumpkin on-board computer unit
- Pumpkin chassis

Upon deployment from the P-POD, the Buccaneer flight computer will power up and start counting down a timer. After 45 minutes, the UHF antenna will deploy and a UHF beacon will be activated. For the first few passes, the ground station operators will attempt communications to perform checkouts of the spacecraft. Approximately 6 days from deployment, the ground station operators will command the spacecraft to deploy the solar panels. Approximately, 2 weeks from deployment, the ground station operators will command the spacecraft to deploy the HF antenna. The spacecraft will then be operational for at least 1 year.

The CubeSat structure is made of Aluminium 6061-T6. It contains standard Commercial Off The Shelf (COTS) materials, electrical components, PCBs and solar cells. The HF antenna payload and UHF antenna used for commanding/telemetry will use spring steel. The GPS patch antenna is ceramic.

There are no pressure vessels, or hazardous / exotic materials.

The electrical power storage system will be a COTS 30Whr common lithium-ion polymer battery purchased from Clyde Space. It has over-charge/current protection circuitry and will carry the UL-listing number BBCV2.MH13654.



EagleSat-1 – Embry-Riddle Aeronautical University, Prescott – 1U

Figure 3: EagleSat-1 Expanded View

EagleSat-1, a 1U satellite built by the Embry-Riddle Aeronautical University EagleSat Satellite Design Team, will attempt to measure the decay of the satellite's orbit over time by the means of an unlocked GPS receiver while gauging the effect of radiation and other natural phenomenon on flash based memory technologies in the space environment. The major scientific payload will be the flash based memory testing. The major subsystems comprising the satellite are structures, power, communications, memory experiment, gps experiment and on board computer (OBC). The radio transmitter within the satellite has been donated by Wood & Douglas of the UK.

Upon deployment from the P-POD, EagleSat-1 will enter sleep mode and begin to charge its energy bank until a charge threshold is reached. After this threshold is met, the satellite will begin a 60 minute countdown. After 60 minutes, the antenna will deploy, followed by a repeating UHF beacon. Ground station operators will attempt communication after a beacon is received at the ground and will verify system health for the first few passes. Normal satellite operation and occasional data downlink will continue for at least one year.

The CubeSat structure is fabricated from 5052-H32 aluminum sheet metal. It contains all standard commercial off the shelf (COTS) materials, electrical components, PCBs, and solar cells. The UHF radio uses a deployable tape measure antenna that stows along the surface of the structure. Deployment occurs with the heating of a resistor which cuts a piece of thread.

There are no pressure vessels, hazardous or exotic materials contained within the CubeSat.

The electrical power storage system consists of a parallel-series bank of supercapacitors. The capacitors carry the UL-listing number BBBG2.MH46887.

## GoldenEagle-1 – Marquette University – 1U



Figure 4: GoldenEagle-1 Expanded View

GoldenEagle-1 will test to see the affects of radiation on flash memory while helping to raise interest in space related engineering at Marquette University.

Upon deployment from the P-POD, The battery will begin charging and the CDH board will power up. At 30 minutes or when batteries have reached predetermined charge, whichever occurs latter, initial systems diagnostics will begin. Deploy antenna and begin transmitting heartbeat. Listen for ground control. If GoldenEagle-1 can contact ground station transmit requested data. If not transmit burst data of low resolution images.

The structure is made of Aluminum 6061. The solar panels are made of germanium. The battery is a lithium polymer battery. The boards are made of PCB FR-4. All of the other components are made of commercial off the shelf (COTS) materials.

There are no pressure vessels, hazardous, or exotic materials.

The power storage system contains one lithium polymer battery, the Clyde Space CubeSat Standalone Battery. It contains over current protection and a built in EPS to handle charging and discharge.

#### MiRaTA – MIT Lincoln Laboratory – 3U



Figure 5: MiRaTA Expanded View

Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission which will demonstrate technology and advance TRL for three key microwave radiometer technologies: 1) Intermediate Frequency Processor, 2) G-band mixer, and 3) calibration using GPS-RO measurements. It will accomplish this with its two primary payloads: a multi- band radiometer, built by MIT Lincoln Laboratory and UMass Amherst, and the Compact TEC Atmospheric GPS System (CTAGS), built by Aerospace Corp.

The supporting spacecraft bus is built by graduate students from the MIT Space Systems Laboratory. The major components of the power, communications, and ADCS subsystems are designed and built by commercial aerospace vendors, while the components of the avionics, structures and thermal subsystems are designed by graduate students with manufacturing done through external fabrication specialists. The primary sponsor of the MiRaTA mission is the NASA Earth Science Technology Office (ESTO) through the In-Space Validation of Earth Science Technologies (InVEST) program.

Upon deployment from the P-POD, MiRaTA will power up and start counting down timers. At 45 minutes, the solar panels and antennas will be deployed, and the backup radio will start beaconing. During the first few passes, the ground station operators will attempt communications to perform checkouts of the spacecraft. Approximately 4 days from launch, payload tests will begin and continue for at least six months.

The CubeSat structure is made of Aluminum 6061-T6 and Aluminum 5052-H32. It contains standard commercial off-the-shelf (COTS) materials, electrical components, PCBs and solar cells. The CTAGS payload uses a ceramic patch antenna.

There are no pressure vessels, hazardous or exotic materials.

The electrical power storage system consists of common lithium-ion batteries with overcharge/current protection circuitry. The lithium batteries carry the UL-listing number BBCV2.MH 13654.

#### RadFxSat - Vanderbilt University / AMSAT - 1U



Figure 6: RadFXSat Expanded View

RadFxSat is a 1U CubeSat designed by Vanderbilt University and AMSAT. It is controlled by AMSAT. Its mission has two objectives: collect data on the effects of space radiation on 28nm bulk CMOS static random access memory for the purpose of validating single-event error rate predictions, and two-way FM communications transponder in the amateur radio band.

#### CONOPS (abbreviated):

P-POD Ejection + 00:00 mm:ss - CubeSat deployed from the P-POD and CubeSat switches indicate successful deployment. IHU starts. Solar Panels may charge battery.

P-POD Ejection + 50:05 mm:ss - transmit antenna deployed (fishing line melt anticipated)

P-POD Ejection + 50:15 mm:ss - receive antenna deployed (fishing line melt anticipated) P-POD Ejection + 50:21 mm:ss - transmission may begin

Design life is 5-15 years. Typical operations include U/V amateur radio communications and low duty-cycle telemetry. Operations are planned until re-entry.

The bent sheet metal structure is Aluminum 5052-H32. Small-machined parts are Aluminum 6061-T6, Copper 110, black Delrin, or G10 Fiberglass. The four long #4 threaded rods, and all #2 screws and jack posts are stainless steel. The PCB Stack includes experiments and avionics. Select ICs have small pieces of Tantalum as radiation shielding. The Rx and Tx boards have copper RF Shields. A large sheet of Lead is used

as ballast on the bottom side of MPPT. There is a Neodymium magnet approximately centered in Rail 2, and two Permalloy hysteresis rods bottom side of Battery.

There are no pressure vessels or hazardous materials on the satellite. No debris is released during deployment of antennas (both ends of fishing lines are tied to satellite parts).

The battery consists of six commercial off the shelf (COTS) NiCad "A" size batteries (Sanyo KR1400AE; UL listing N/A; total capacity 11.5 Watt hours).



Figure 7: 1U CubeSat Specification



Figure 8: 3U CubeSat Specification

#### Section 3: Assessment of Spacecraft Debris Released during Normal Operations

The assessment of spacecraft debris requires the identification of any object (>1 mm) expected to be released from the spacecraft any time after launch, including object dimensions, mass, and material.

The section 3 requires rationale/necessity for release of each object, time of release of each object, relative to launch time, release velocity of each object with respect to spacecraft, expected orbital parameters (apogee, perigee, and inclination) of each object after release, calculated orbital lifetime of each object, including time spent in Low Earth Orbit (LEO), and an assessment of spacecraft compliance with Requirements 4.3-1 and 4.3-2.

No releases are planned on the ELaNa-XIV CubeSat mission therefore this section is not applicable.

# Section 4: Assessment of Spacecraft Intentional Breakups and Potential for Explosions.

There are NO plans for designed spacecraft breakups, explosions, or intentional collisions on the ELaNa-XIV mission.

The probability of battery explosion is very low, and, due to the very small mass of the satellites and their short orbital lifetimes the effect of an explosion on the far-term <u>low</u> earth orbit environment is negligible (ref (h)).

The CubeSats batteries still meet Req. 56450 (4.4-2) by virtue of the HQ OSMA policy regarding CubeSat battery disconnect stating;

"CubeSats as a satellite class need not disconnect their batteries if flown in LEO with orbital lifetimes less than 25 years." (ref. (h))

Assessment of spacecraft compliance with Requirements 4.4-1 through 4.4-4 shows that with a lifetime of 13.8 years maximum the ELaNa-XIV CubeSat is compliant.

#### Section 5: Assessment of Spacecraft Potential for On-Orbit Collisions

Calculation of spacecraft probability of collision with space objects larger than 10 cm in diameter during the orbital lifetime of the spacecraft takes into account both the mean cross sectional area and orbital lifetime.

The largest mean cross sectional area (CSA) among the five CubeSats, is that of the Buccaneer CubeSat (10 X 10 X 32.5 cm):

$$Mean CSA = \frac{\sum Surface Area}{4} = \frac{[2 * (w * l) + 4 * (w * h)]}{4}$$
  
Equation 1: Mean Cross Sectional Area for Convex Objects

$$Mean \ CSA = \frac{(A_{max} + A_1 + A_1)}{2}$$

## **Equation 2: Mean Cross Sectional Area for Complex Objects**

All CubeSats evaluated for this ODAR are stowed in a convex configuration, indicating there are no elements of the CubeSats obscuring another element of the same CubeSats from view. Thus, mean CSA for all stowed CubeSats was calculated using Equation 1. This configuration renders the longest orbital life times for all CubeSats.

Once a CubeSat has been ejected from the P-POD and deployables have been extended Equation 2 is utilized to determine the mean CSA.  $A_{max}$  is identified as the view that yields the maximum cross-sectional area.  $A_1$  and  $A_2$  are the two cross-sectional areas orthogonal to  $A_{max}$ . Refer to Appendix A for dimensions used in these calculations

The Buccaneer CubeSat has an orbit at deployment of 440 km perigee altitude by 811 km apogee altitude, with an inclination of 97.7 degrees. With an area to mass (3.98 kg) ratio of 0.046 m<sup>2</sup>/kg, DAS yields 5.2 years for orbit lifetime for its deployed state. Even with the variation in CubeSat design and orbital lifetime ELaNa-XIV CubeSats see an average of 0.00000 probability of collision. Buccaneer, with the largest cross sectional area will see the highest probability of collision of 0.00000. Table 4 below provides complete results.

There will be no post-mission disposal operation. As such the identification of all systems and components required to accomplish post-mission disposal operation, including passivation and maneuvering, is not applicable.

|      | CubeSat                                      | Buccaneer | EagleSat | GoldenEagle-1 | MiRaTA  | RadFXSat |
|------|----------------------------------------------|-----------|----------|---------------|---------|----------|
|      | Mass (kg)                                    | 3.98      | 1.1      | 0.856         | 4.19    | 1.32     |
| -    |                                              |           |          |               |         |          |
|      | Mean C/S Area (m^2)                          | 0.038     | 0.016    | 0.015         | 0.0374  | 0.015    |
| ved  | Area-to Mass (m^2/kg)                        | 0.009     | 0.014    | 0.018         | 0.0089  | 0.011    |
| Stov | Orbital Lifetime (yrs)                       | 8.5       | 7.4      | 6.8           | 13.8    | 8.5      |
| • •  | Probability of collision (10 <sup>^</sup> X) | 0.00000   | 0.00000  | 0.00000       | 0.00000 | 0.00000  |
|      |                                              |           |          |               |         |          |
| d    | Mean C/S Area (m^2)                          | 0.183     | 0.021    | 0.018         | 0.0385  | 0.0153   |
| oye  | Area-to Mass (m^2/kg)                        | 0.046     | 0.019    | 0.021         | 0.0092  | 0.012    |
| epl  | Orbital Lifetime (yrs)                       | 5.2       | 6.6      | 6.3           | 12.5    | 8.3      |
| Ц    | Probability of collision (10 <sup>^</sup> X) | 0.00000   | 0.00000  | 0.00000       | 0.00000 | 0.00000  |

# Table 3: CubeSat Orbital Lifetime & Collision Probability

Solar Flux Table Dated 10/14/2015

The probability of any ELaNa-XIV spacecraft collision with debris and meteoroids greater than 10 cm in diameter and capable of preventing post-mission disposal is less than 0.00000, for any configuration. This satisfies the 0.001 maximum probability requirement 4.5-1.

Since the CubeSats have no capability or plan for end-of-mission disposal, requirement 4.5-2 is not applicable.

Assessment of spacecraft compliance with Requirements 4.5-1 shows ELaNa-XIV to be compliant. Requirement 4.5-2 is not applicable to this mission.

## Section 6: Assessment of Spacecraft Post\_mission Disposal Plans and Procedures

All ELaNa-XIV spacecraft will naturally decay from orbit within 25 years after end of the mission, satisfying requirement 4.6-1a detailing the spacecraft disposal option.

Planning for spacecraft maneuvers to accomplish post\_mission disposal is not applicable. Disposal is achieved via passive atmospheric reentry.

Calculating the area-to-mass ratio for the worst-case, longest orbital lifetime (smallest Area-to-Mass) post-mission disposal among the CubeSats finds MiRaTA in its stowed configuration as the longest lived. The area-to-mass is calculated for is as follows:

$$\frac{Mean C/SArea(m^2)}{Mass(kg)} = Area - to - Mass(\frac{m^2}{kg})$$

## **Equation 3: Area to Mass**

$$\frac{0.0374m^2}{4.19kg} = 0.0089 \frac{m^2}{kg}$$
  
Equation 4: Area to Mass Calculation of MiRaTA (Stowed)

MiRaTA has the smallest Area-to-Mass ratio and as a result will have the longest orbital lifetime (worst cast time to deorbit). The assessment of the spacecraft illustrates they are compliant with Requirements 4.6-1 through 4.6-5.

## DAS 2.0.2 Orbital Lifetime Calculations:

DAS inputs are: 440 km maximum perigee 811 km maximum apogee altitudes with an inclination of 97.7 degrees at deployment in January 20 of 2017. An area to mass ratio of 0.0089 m<sup>2</sup>/kg for the MiRaTA CubeSat was imputed. DAS 2.0.2 (using a solar flux file dated 10/14/2015) yields a 13.8-year orbit lifetime for MiRaTA in its stowed state.

This meets requirement 4.6-1. For the complete list of CubeSat orbital lifetimes reference Table 3: CubeSat Orbital Lifetime & Collision Probability

Assessment results show compliance.

## Section 7: Assessment of Spacecraft Reentry Hazards

A detailed assessment of the components to be flown on ELaNa-XIV was performed. The assessment used DAS 2.0.2, a conservative tool used by the NASA Orbital Debris Office to verify Requirement 4.7-1. The analysis is intended to provide a bounding analysis for characterizing the survivability of a CubeSat's component during re-entry. For example, when DAS shows a component surviving reentry it is not taking into account the material ablating away or charring due to oxidative heating. Both physical effects are experienced upon reentry and will decrease the mass and size of the real-life components as the reenter the atmosphere, reducing the risk they pose still further.

The following steps are used to identify and evaluate a components potential reentry risk relative to the 4.7-1 requirement of having less than 15 J of kinetic energy and a 1:10,000 probability of a human casualty in the event the survive reentry.

- 1. Low melting temperature (less than 1000 °C) components are identified as materials that would never survive reentry and pose no risk to human casualty. This is confirmed through DAS analysis that showed materials with melting temperatures equal to or below that of copper (1080 °C) will always demise upon reentry for any size component up to the dimensions of a 1U CubeSat.
- 2. The remaining high temperature materials are shown to pose negligible risk to human casualty through a bounding DAS analysis of the highest temperature components, stainless steel (1500°C). If a component is of similar dimensions and has a melting temperature between 1000 °C and 1500°C, it can be expected to posses the same negligible risk as stainless steel components. See Table 4.

| CubeSat       | High Temp<br>Component      | Material                  | Mass (g) | Demise Alt (km) | KE (J) |
|---------------|-----------------------------|---------------------------|----------|-----------------|--------|
| Buccaneer     | HF Antenna                  | Spring Steel ASTM<br>A228 | 110      | 0               | 8      |
| Buccaneer     | AntS UHF Antenna            | Spring Steel ASTM<br>A228 | 10       | 76.4            | 0      |
| Buccaneer     | GPS Antenna                 | Ceramic                   | 50       | 72.6            | 0      |
| Buccaneer     | Fasteners / Screws          | Stainless Steel           | 0.3      | 77.9            | 0      |
| Buccaneer     | Solar Panel Clips           | Stainless Steel           | 1        | 77.9            | 0      |
| EAGLESAT-1    | Antenna + Panels            | Steel Tape Measure        | 29       | 0               | 2      |
| EAGLESAT-1    | GPS Patch Antenna           | Ceramic                   | 10       | 73.1            | 0      |
| GoldenEagle-1 | Antennae                    | Steel                     | 1.1      | 0               | 0      |
| GoldenEagle-1 | Sep Switches                | Stainless Steel           | 0.1      | 77.8            | 0      |
| GoldenEagle-1 | Antennae counter<br>balance | Steel                     | 1.1      | 0               | 0      |
| GoldenEagle-1 | Fasteners                   | Stainless Steel           | 0.3      | 77.9            | 0      |

## Table 4: ELaNa-VIX Survivability Analysis

| CubeSat  | High Temp<br>Component       | Material        | Mass (g) | Demise Alt (km) | KE<br>(J) |
|----------|------------------------------|-----------------|----------|-----------------|-----------|
| MiRaTA   | Fasteners/Screws             | Stainless Steel | 0.25     | 77.9            | 0         |
| RadFXSat | PCB Stack screws             | Stainless steel | 1.3      | 77.6            | 0         |
| RadFXSat | Magnet                       | Neodymium       | 5.3      | 77.8            | 0         |
| RadFXSat | Tantalum Radiation<br>Shield | Tantalum*       | 3.6      | 0               | 2         |
| RadFXSat | Tantalum Radiation<br>Shield | Tantalum*       | 2.3      | 0               | 1         |
| RadFXSat | Tantalum Radiation<br>Shield | Tantalum*       | 1.9      | 0               | 0         |
| RadFXSat | Tantalum Radiation<br>Shield | Tantalum*       | 1.1      | 0               | 0         |
| RadFXSat | Tantalum Radiation<br>Shield | Tantalum*       | 0.8      | 0               | 0         |
| RadFXSat | Tantalum Radiation<br>Shield | Tantalum*       | 0.8      | 0               | 0         |
| RadFXSat | Tantalum Radiation<br>Shield | Tantalum*       | 0.8      | 0               | 0         |
| RadFXSat | Tantalum Radiation<br>Shield | Tantalum*       | 0.7      | 0               | 0         |
| RadFXSat | Tantalum Radiation<br>Shield | Tantalum*       | 0.6      | 0               | 0         |
| RadFXSat | Tantalum Radiation<br>Shield | Tantalum*       | 0.3      | 0               | 0         |
| RadFXSat | Tantalum Radiation<br>Shield | Tantalum*       | 0.1      | 0               | 0         |

## Table 5: ELaNa-VIX Survivability Analysis Continued

\*Note: Tantalum is not apart of the DAS material list, as a result Tungsten was used to understand survivability characteristics. Tantalum's melting temperature is 2980 degrees Celsius while Tungsten's is 3422 deg C, a 442 deg C difference. This is a very conservative approach. As the analysis shows the Tungsten equivalent components are compliant, it is possible to safely and conservatively conclude the Tantalum components are also compliant.

A significant number of the high temperature components demise upon reentry. The components that DAS conservatively identifies as reaching the ground have less than 15 joules of kinetic energy. No high temperature component will pose a risk to human casualty as defined by the Range Commander's Council. In fact, any injury incurred or inflicted by an object with such low energy would be negligible and wouldn't require the individual to seek medical attention.

Components, reported by DAS to have a demise altitude of 0 km and kinetic energy of 0J, can be assumed to have energy less than one joule as DAS does not supply decimal result.

Through the method described above, Table 4: ELaNa-VIX Survivability Analysis, and the full component lists in the Appendix all CubeSats launching under the ELaNa-XIV mission are conservatively shown to be in compliance with Requirement 4.7-1 of NASA-STD-8719.14A.

#### Section 8: Assessment for Tether Missions

ELaNa-XIV CubeSats will not be deploying any tethers.

ELaNa-XIV CubeSats satisfy Section 8's requirement 4.8-1.

#### Section 9-14

ODAR sections 9 through 14 for the launch vehicle are addressed in ref. (g), and are not covered here.

If you have any questions, please contact the undersigned at 321-867-2958.

/original signed by/

Justin Treptow Flight Design Analyst NASA/KSC/VA-H1

cc: VA-H/Mr. Carney VA-H1/Mr. Beaver VA-H1/Mr. Haddox VA-G2/Mr. Atkinson VA-G2/Mr. Marin SA-D2/Mr. Frattin SA-D2/Mr. Hale SA-D2/Mr. Henry Analex-3/Mr. Davis Analex-22/Ms. Ramos

# **Appendix Index:**

| Appendix A. | ELaNa-XIV Component List by CubeSat: Buccaneer     |
|-------------|----------------------------------------------------|
| Appendix B. | ELaNa-XIV Component List by CubeSat: EagleSat      |
| Appendix C. | ELaNa-XIV Component List by CubeSat: GoldenEagle-1 |
| Appendix D. | ELaNa-XIV Component List by CubeSat: MiRaTA        |

Appendix D.ELaNa-XIV Component List by CubeSat: MiRaTAAppendix E.ELaNa-XIV Component List by CubeSat: RadFXSat

| Name                          | Qty | Material                                 | Body Type   | Mass (g) | Diameter/<br>Width (mm) | Length<br>(mm) | Height<br>(mm) | High<br>Temp | Melting<br>Temp | Survivability                               |
|-------------------------------|-----|------------------------------------------|-------------|----------|-------------------------|----------------|----------------|--------------|-----------------|---------------------------------------------|
| Buccaneer RMM                 | 1   |                                          | 3U+         |          |                         |                |                |              |                 |                                             |
| CubeSat Chassis               | 1   | Aluminium 5052-H32                       | Box         | 320      | 100                     | 100            | 325            | No           | -               | Demise                                      |
| Top/Bottom Plate              | 2   | Aluminium 5052-H32                       | Square      | 62       | 100                     | 100            | 5              | No           | -               | Demise                                      |
| HF Antenna                    | 4   | Spring Steel ASTM A228                   | Ribbon      | 110      | 19                      | 1730           | 1              | Yes          | 1500            | Survives to the ground<br>with 8J of energy |
| Tuna Can (HF Antenna Mount)   | 1   | Ketron PEEK-1000 / Aluminium 6061-<br>T6 | Cylinder    | 120      | 64                      | -              | 36             | No           | -               | Demise                                      |
| AntS UHF Antenna              | 4   | Spring Steel ASTM A228                   | Ribbon      | 10       | 7                       | 100            | 1              | Yes          | 1500            | Demise at 76.4km<br>Altitude                |
| S-Band Patch Antenna          | 1   | Aluminium 8062                           | Cylinder    | 50       | 76                      | -              | 4              | No           | -               | Demise                                      |
| GPS Antenna                   | 1   | Ceramic                                  | Square      | 50       | 25                      | 25             | 8              | Yes          | 1400            | Demise at 72.6km<br>Altitude                |
| Side Panels/Deployable Panels | 6   | FR-4 Fiberglass / Copper                 | Rectangular | 50       | 100                     | 325            | 2              | No           | -               | Demise                                      |
| UTJ Solar Cells               | 23  | GaAs                                     | Rectangular | 0.1      | 50                      | 25             | 0.1            | No           | -               | Demise                                      |
| Wing Hinges                   | 8   | Aluminum 6061-T6                         | Plate       | 5        | 8                       | 30             | 3              | No           | -               | Demise                                      |
| Fasteners / Screws            | 60  | Stainless Steel                          | Rods        | 20       | 1.6                     | 5              | -              | Yes          | 1500            | Demise at 77.9km<br>Altitude                |
| Sep Switches Plungers         | 3   | Aluminum 6061-T6                         | Rod         | 1        | 2                       | 20             | -              | No           | -               | Demise                                      |
| CubeSat Feet                  | 4   | Aluminum 6061-T6                         | Cube        | 1        | 8.5                     | 8.5            | 6.5            | No           | -               | Demise                                      |
| Solar Panel Connectors        | 8   | Polyamide                                | Rectangular | 1        | 1                       | 5              | 5              | No           | -               | Demise                                      |
| Kapton Tape                   | -   | Polyimide                                | Coating     | -        | -                       | -              | -              | No           | -               | Demise                                      |
| Solar Panel Clips             | 8   | Stainless Steel                          | Clip        | 1        | 5                       | 5              | 0.5            | Yes          | 1500            | Demise at 77.9km<br>Altitude                |
| Pumpkin Flight Computer       | 1   | FR-4 Fiberglass                          | Square      | 100      | 100                     | 100            | 20             | No           | -               | Demise                                      |
| Clyde Space 30WHr Battery     | 1   | FR-4 Fiberglass                          | Square      | 100      | 100                     | 100            | 20             | No           | -               | Demise                                      |
| Clyde Space EPS               | 1   | FR-4 Fiberglass                          | Square      | 100      | 100                     | 100            | 20             | No           | -               | Demise                                      |
| MAI-400 ADCS Unit             | 1   | Aluminum 6061-T651                       | Cube        | 600      | 100                     | 100            | 56             | No           | -               | Demise                                      |
| UHF Transceiver Radio         | 1   | FR-4 Fiberglass                          | Square      | 100      | 100                     | 100            | 20             | No           | -               | Demise                                      |
| S-Band Transmitter Radio      | 1   | FR-4 Fiberglass                          | Square      | 100      | 100                     | 100            | 20             | No           | -               | Demise                                      |
| ADCS Interface Module         | 1   | FR-4 Fiberglass                          | Square      | 100      | 100                     | 100            | 20             | No           | -               | Demise                                      |
| Solar Interface Module        | 1   | FR-4 Fiberglass                          | Square      | 100      | 100                     | 100            | 20             | No           | -               | Demise                                      |
| Magnetometer                  | 1   | FR-4 Fiberglass                          | Square      | 100      | 100                     | 100            | 20             | No           | -               | Demise                                      |
| Payload Management Board      | 1   | FR-4 Fiberglass                          | Square      | 100      | 100                     | 100            | 20             | No           | -               | Demise                                      |

# **Appendix A.** ELaNa-XIV Component List by CubeSat: Buccaneer

| Name                        | Qty | Material              | Body Type   | Mass (g) | Diameter/<br>Width (mm) | Length<br>(mm) | Height<br>(mm) | High<br>Temp | Melting<br>Temp | Survivability |
|-----------------------------|-----|-----------------------|-------------|----------|-------------------------|----------------|----------------|--------------|-----------------|---------------|
| Payload GPS Board           | 1   | FR-4 Fiberglass       | Square      | 100      | 100                     | 100            | 20             | No           | -               | Demise        |
| Payload ADC Board           | 1   | FR-4 Fiberglass       | Square      | 100      | 100                     | 100            | 20             | No           | -               | Demise        |
| Payload Backend Board       | 1   | FR-4 Fiberglass       | Square      | 100      | 100                     | 100            | 20             | No           | -               | Demise        |
| Payload Antenna Board       | 1   | FR-4 Fiberglass       | Circular    | 100      | 100                     | 100            | 20             | No           | -               | Demise        |
| Payload Bus Interface Board | 1   | FR-4 Fiberglass       | Square      | 100      | 100                     | 100            | 20             | No           | -               | Demise        |
| Antenna Cabling/Harness     | 5   | Coax                  | Coax        | -        | 2.5                     | 150            | -              | No           | -               | Demise        |
| Standoffs                   | 1   | Aluminium 6061-T6     | Misc        | 1        | 7                       | 20             | -              | No           | -               | Demise        |
| Threaded Rods               | 4   | Aluminium 6061-T6     | Rods        | 8        | 3                       | 150            | -              | No           | -               | Demise        |
| Seperation Switches         | 3   | Thermalplastic UL94HB | Rectangular | 5        | 5                       | 20             | 10             | No           | -               | Demise        |
| CSK RBF Bracket             | 1   | Aluminium 6061-T6     | Bracket     | 1        | 35.4                    | 59.7           | 18.4           | No           | -               | Demise        |
| Stack Spacers               | 20  | Aluminium 6061-T6     | Tubular Rod | 1        | 6                       | 15             | -              | No           | -               | Demise        |

| Name              | Qty | Material           | Body Type                | Mass (g) | Diameter/<br>Width (mm) | Length<br>(mm) | Height<br>(mm) | High<br>Temp | Melting<br>Temp | Survivability              |
|-------------------|-----|--------------------|--------------------------|----------|-------------------------|----------------|----------------|--------------|-----------------|----------------------------|
| EagleSat-1        | 1   |                    |                          | ~757.4   |                         |                |                |              |                 |                            |
| Structure Main    | 1   | Aluminum 7075      | Box                      | 184.6    | 100                     | 100            | 106.6          | No           | -               | Demise                     |
| Structure Plate   | 1   | Aluminum 7075      | Square                   | 55.8     | 100                     | 100            | 73.25          | No           | -               | Demise                     |
| Antenna + Panels  | 1   | Steel Tape Measure | Square with<br>Extrusion | 29       | 102                     | 102            | 1.77           | Yes          | 1500            | Survives with 2J of Energy |
| Solar Panels      | 5   | FR-4 PCB           | Square                   | 13       | 1.5                     | 82             | 100            | No           | -               | Demise                     |
| Super capacitors  | 10  |                    | Cylinder                 | Х        | 10                      | 32             | -              | No           | -               | Demise                     |
| GPS Patch Antenna | 1   | Ceramic            | Box                      | 10       | 17                      | 17             | 8.813          | Yes          | 1400            | Demise at 73.1km Altitude  |
| GPS Board         | 1   | FR-4 PCB           | Square                   | 78       | 90                      | 96             | 13             | No           | -               | Demise                     |
| Comms. Board      | 1   | FR-4 PCB           | Square                   | 127      | 90                      | 96             | 13             | No           | -               | Demise                     |
| EPS Board         | 1   | FR-4 PCB           | Square                   | 76       | 90                      | 96             | 13             | No           | -               | Demise                     |
| OBC Board         | 1   | FR-4 PCB           | Square                   | 96       | 92                      | 96             | 13             | No           | -               | Demise                     |
| Sep Switches      | 2   | Steel/Plastic      |                          | <1       | 1.7                     | 1.7            | -              | No           | -               | Demise                     |
| Risers            | 16  | Aluminum 7075      | Cylindrical              | <1       | 6                       | 30             | -              | No           | -               | Demise                     |
| Fasteners         | 8   | Aluminum 7075      | Triangular               | 8        | -                       | -              | -              | No           | -               | Demise                     |
| Cabling           | 2ft | Copper Alloy       | Wire                     | <30g     | -                       | -              | -              | No           | -               | Demise                     |

# **Appendix B.** ELaNa-XIV Component List by CubeSat: EagleSat

| Name                     | Qty | Material        | Body Type | Mass (g)<br>(total) | Diameter/<br>Width (mm) | Length<br>(mm) | Height<br>(mm) | High<br>Temp | Melting<br>Temp | Survivability                              |
|--------------------------|-----|-----------------|-----------|---------------------|-------------------------|----------------|----------------|--------------|-----------------|--------------------------------------------|
| GoldenEagle-1            | 1   | Aluminum 6061   | Box       | 612                 | 100                     | 100            | 100            | No           | -               | Demise                                     |
| CubeSat Structure        | 1   | Aluminum 6061   | Box       | 151.1               | 100                     | 100            | 100            | No           | -               | Demise                                     |
| Antennae                 | 1   | Steel           | Sheet     | 1.1                 | 19.05                   | 344.7          | 0.6            | Yes          | 1400            | Survives to the ground with < 1J of energy |
| Solar Panels             | 10  | Germanium       | Sheet     | 0.3                 | 69.85                   | 39.79          | 0.79           | No           | -               | Demise                                     |
| Sep Switches             | 1   | Stainless Steel | Cylinder  | 0.1                 | 4.76                    | 4.76           | 12.7           | Yes          | 1500            | Demise at 77.8km Altitude                  |
| Antennae counter balance | 1   | Steel           | Sheet     | 1.1                 | 19.05                   | 344.7          | 0.6            | Yes          | 1400            | Survives to the ground with < 1J of energy |
| C&DH Board               | 1   | PCB FR-4        | Box       | 7.2                 | 85.73                   | 85.73          | 11.11          | No           | -               | Demise                                     |
| Comm Board               | 1   | PCB FR-4        | Box       | 10.6                | 98.43                   | 90.49          | 22.23          | No           | -               | Demise                                     |
| Batteries                | 1   | Lithium Polymer | Box       | 256                 | 95.89                   | 90.17          | 20.44          | No           | -               | Demise                                     |
| Camera                   | 1   | Plastic         | Cylinder  | 6                   | 31.75                   | 31.75          | 33.34          | No           | -               | Demise                                     |
| Gyro                     | 1   | Silicon         | Square    | 0.5                 | 12.7                    | 22.86          | 2.6            | No           | -               | Demise                                     |
| Fasteners                | -   | Stainless Steel | Cylnder   | 0.3                 | 1.6                     | 5              | -              | Yes          | 1500            | Demise at 77.9km Altitude                  |
| Cabling                  | -   | Copper alloy    | Cylinder  | -                   | -                       | -              | -              | No           | -               | Demise                                     |

# **Appendix C.** ELaNa-XIV Component List by CubeSat: GoldenEagle-1

| Name                       | Qty | Material                                                                                                                                                                                   | Body Type         | Mass (g) | Diameter/<br>Width (mm) | Length<br>(mm) | Height<br>(mm) | High<br>Temp | Melting<br>Temp | Survivability |
|----------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|-------------------------|----------------|----------------|--------------|-----------------|---------------|
| MiRaTA                     |     |                                                                                                                                                                                            |                   |          |                         |                |                |              |                 |               |
| CubeSat Structure          | 1   | Al 6061 / Al 5052                                                                                                                                                                          | Box               | 0.604    | See below               | See<br>below   | See<br>below   | No           | -               | Demise        |
| Ram Plate                  | 1   | 5052-H32 Aluminum                                                                                                                                                                          | Square            | 0.044    | 97                      | 97             | 1              | No           | -               | Demise        |
| MAI 400 Top Cover          | 1   | 6061-T6 Aluminum                                                                                                                                                                           | Cube              | 0.102    | 97                      | 97             | 1              | No           | -               | Demise        |
| MAI 400 Bottom Cover       | 1   | 6061-T6 Aluminum                                                                                                                                                                           | Square            | 0.076    | 97                      | 97             | 1              | No           | -               | Demise        |
| MAI Sep Switch Bracket     | 3   | 6061-T6 Aluminum                                                                                                                                                                           | Bracket           | 0.004    | 5                       | 5              | 5              | No           | -               | Demise        |
| Side Plate Housing (Left)  | 1   | 5052-H32 Aluminum                                                                                                                                                                          | Rectangle         | 0.068    | 97                      | 324            | 1              | No           | -               | Demise        |
| Side Plate Housing (Right) | 1   | 6061-T6 Aluminum                                                                                                                                                                           | Rectangle         | 0.074    | 97                      | 324            | 1              | No           | -               | Demise        |
| Housing Front              | 1   | 5052-H32 Aluminum                                                                                                                                                                          | Rectangle         | 0.096    | 97                      | 324            | 1              | No           | -               | Demise        |
| Housing Back               | 1   | 5052-H32 Aluminum                                                                                                                                                                          | Rectangle         | 0.088    | 97                      | 324            | 1              | No           | -               | Demise        |
| Anti-Ram Plate             | 1   | 5052-H32 Aluminum                                                                                                                                                                          | Square            | 0.038    | 97                      | 97             | 1              | No           | -               | Demise        |
| LNA L Bracket              | 1   | 6061-T6 Aluminum                                                                                                                                                                           | Bracket           | 0.014    | 59                      | 44             | 10             | No           | -               | Demise        |
| Antennas                   | 2   | CABLE: PTFE dielectric insulator,<br>Silver-plated copper clad steel wire,<br>Tin-soaked copper braid<br>CONNECTORS: Gold plated brass<br>ANTENNA: Mylar-polymer coating on<br>metal blade | Measuring<br>tape | 0.010    | 178                     | 6              | 0.2            |              | -               | Demise        |
| Solar Panels               | 2   | 3 faces with solar cells. (no cells on<br>body mounted PCB; cells on 2 Zenith<br>facing PCBs; Cells on 1 Nadir facing<br>PCB)                                                              | Rectangular       | 0.640    | 152                     | 324            | 0.8            | No           | -               | Demise        |
| CTAGS                      | 1   | TMM 3, RT6002, RO4003C Cu double sided substrates                                                                                                                                          | Rectangular       | 0.479    | 82                      | 330            | 6.5            |              | -               | Demise        |
| Radiometer                 | 1   | 6061-T6 Aluminum and 5052-H32<br>Aluminum                                                                                                                                                  | Box               | 0.843    | 80                      | 80             | 80             | No           | -               | Demise        |
| Sep Switches               | 3   | Thermoplastic, thermoplastic acetal,<br>silver plated commercial bronze,<br>beryllium copper, stainless steel, fine<br>silver, cold rolled steel nickel-plated                             | Switch            | 0.005    | 5                       | 20             | 10             | No           | -               | Demise        |
| Radar Tag                  | 1   | TBD                                                                                                                                                                                        | Rectangle         | 0.075    | 83                      | 100            | 1.7            | No           | -               | Demise        |

# **Appendix D.** ELaNa-XIV Component List by CubeSat: MiRaTA

| Name                  | Qty                        | Material                                                                                                                                                                                                                                                                                      | Body Type | Mass (g) | Diameter/<br>Width (mm) | Length<br>(mm) | Height<br>(mm) | High<br>Temp | Melting<br>Temp | Survivability             |
|-----------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|-------------------------|----------------|----------------|--------------|-----------------|---------------------------|
| Batteries             | 1<br>pack<br>of 4<br>cells | BOARDS: Araldite 2014 epoxy, 1B31<br>Acrylic conformal coating, Dow<br>Corning 6-1104 adhesive, Stycast 4952<br>thermally conducting RTV, FR4 PCBs,<br>CARAPACE EMP110 or XV501T-4<br>solder resist, Sn62 or Sn62 (Tin/Lead)<br>solder, Alpa Rosin Flux (RF800 ROL<br>0)<br>SEALED BATT       | Cube      | 0.200    | 90                      | 96             | 14.4           | No           | -               | Demise                    |
| ADCS Components       | 1                          | STRUCTURE: Aluminum (MIL-DTL-<br>5541F, Type I or II, class 1A), Hard<br>anodized aluminum (MIL-A8625F,<br>Type III, class 1), Stainless steel 18-8<br>screws and standoffs, Arathane 5753<br>A/B ; WIRES: MIL-W-16878/4 TFE<br>WHEELS: Maxon EC-9, Braycote 601<br>EF, Ceramic ball          | Cube      | 0.79     | 99                      | 99             | 50             | No           | -               | Demise                    |
| L3Com UHF Cadet Radio | 1                          | SAMTEC ESQ-126-39-G-D<br>stackthrough CONNECTORS: 3.22g<br>Liquid Crystal Polymer, 0.91g<br>Polybutylene Terephtalate, 4.03g<br>Phosphor Bronze, 0.04g Nickel, 0.01g<br>Gold<br>BOARDS: Baked-out FR4<br>CAPACITORS: Ceramic<br>STAKING EPOXY: Arathane 5753<br>A/B (LV)<br>HOUSING: Aluminum | Square    | 0.086    | 90                      | 96             | 15.5           | No           | -               | Demise                    |
| EPS Board             | 1                          | BOARDS: Araldite 2014 epoxy, 1B31<br>Acrylic conformal coating, Dow<br>Corning 6-1104 adhesive, Stycast 4952<br>thermally conducting RTV, FR4 PCBs,<br>CARAPACE EMP110 or XV501T-4<br>solder resist, Sn62 or Sn62 (Tin/Lead)<br>solder, Alpa Rosin Flux (RF800 ROL<br>0)<br>CONNECTORS:       | Square    | 0.140    | 90                      | 96             | 13.2           | No           | -               | Demise                    |
| Motherboard           | 1                          | PCB FR-4, various Samtec connectors,<br>headers, circuit board components.                                                                                                                                                                                                                    | Square    | 0.074    | 90                      | 96             | 13.2           | No           | -               | Demise                    |
| Fasteners/Screws      | TBD                        | Stainless Steel                                                                                                                                                                                                                                                                               | Screws    | 0.25     | Varied                  | Varied         | Varied         | Yes          | 1500            | Demise at 77.9km Altitude |
| Cabling               | TBD                        | RG405 Coax (copper clad steel, silver);<br>24AWG wire, type M22759/11-24<br>(silver coated copper with<br>polyetrafluoroethylene [PTFE]<br>insulation)                                                                                                                                        | Cables    | 0.15     | Varied                  | Varied         | Varied         | No           | -               | Demise                    |

| Name                                | Qty | Material          | Body Type          | Mass (g) | Diameter/<br>Width (mm) | Length<br>(mm) | Height<br>(mm) | High<br>Temp | Melting<br>Temp | Survivability             |
|-------------------------------------|-----|-------------------|--------------------|----------|-------------------------|----------------|----------------|--------------|-----------------|---------------------------|
| RadFXSat                            |     |                   | box (1U)           |          |                         |                |                |              |                 |                           |
| CubeSat Walls                       | 2   | Aluminum 5052 H32 | sheet w/ bends     | 32.      | 200.                    | 108.           | 1.             | No           | -               | Demise                    |
| Solar Panels (+Z, -Z)               | 2   | Fiberglass        | sheet              | 42.      | 97.                     | 97.            | 1.6            | No           | -               | Demise                    |
| Solar Panels (+X, -X, +Y, -Y)       | 4   | Fiberglass        | sheet              | 43.      | 81.                     | 108.           | 1.6            | No           | -               | Demise                    |
| Rail Ends                           | 8   | Aluminum 6061     | stepped box        | 4.       | 21.                     | 21.            | 10.            | No           | -               | Demise                    |
| Antenna                             | 1   | Beryllium Copper  | wire               | 1.       | 0.5                     | 165.           | -              | No           | -               | Demise                    |
| Antenna                             | 1   | Beryllium Copper  | wire               | 1.       | 0.5                     | 530.           | -              | No           | -               | Demise                    |
| Antennae Posts                      | 2   | Copper            | cylinder           | 1.       | 5.                      | 4.             | -              | No           | -               | Demise                    |
| Antennae Posts                      | 2   | Fiberglass        | cylinder           | 1.       | 5.                      | 4.             | -              | No           | -               | Demise                    |
| Antennae Posts                      | 4   | Delrin            | cylinder           | 1.       | 5.                      | 4.             | -              | No           | -               | Demise                    |
| PCB Stack mounts                    | 8   | Delrin            | box                | 1.       | 14.                     | 14.            | 7.             | No           | -               | Demise                    |
| PCB Stack screws                    | 4   | stainless steel   | cylinder           | 1.3      | 2.8                     | 98.            |                | Yes          | 1500            | Demise at 77.6km Altitude |
| VUC PCB                             | 1   | Fiberglass        | sheet              | 38.      | 95.                     | 95.            | 1.6            | No           | -               | Demise                    |
| LEP PCB                             | 3   | Fiberglass        | sheet              | 38.      | 95.                     | 95.            | 1.6            | No           | -               | Demise                    |
| Batteries                           | 6   | NiCad "A" battery | cylinder           | 31.      | 17.                     | 49.            | -              | No           | -               | Demise                    |
| Hysteresis Rods                     | 2   | Permalloy         | cylinder           | 4.8      | 3.2                     | 70.            | -              | No           | -               | Demise                    |
| Battery PCB (excl<br>Batt,Hyst,Tan) | 1   | Fiberglass        | sheet              | 50.      | 95.                     | 95.            | 1.6            | No           | -               | Demise                    |
| PSU PCB (excl Lead, Tan)            | 1   | Fiberglass        | sheet              | 49.      | 95.                     | 95.            | 1.6            | No           | -               | Demise                    |
| IHU PCB (excl Tan)                  | 1   | Fiberglass        | sheet              | 46.      | 95.                     | 95.            | 1.6            | No           | -               | Demise                    |
| RX PCB (pop excl RF Shield)         | 1   | Fiberglass        | sheet              | 48.      | 95.                     | 95.            | 1.6            | No           | -               | Demise                    |
| TX PCB (pop excl RF<br>Shield,Tan)  | 1   | Fiberglass        | sheet              | 44.      | 95.                     | 95.            | 1.6            | No           | -               | Demise                    |
| RF Shields                          | 2   | Copper            | sheet              | 18.      | 80.                     | 80.            | 0.5            | No           | -               | Demise                    |
| PCB Standoffs                       | 20  | Aluminum 6061     | hollow<br>cylinder | 0.5      | 6.4                     | 8.2            | -              | No           | -               | Demise                    |
| PCB Standoffs                       | 8   | Copper            | hollow<br>cylinder | 0.8      | 4.8                     | 8.2            | -              | No           | -               | Demise                    |
| PCB Standoffs                       | 8   | Delrin            | hollow<br>cylinder | 0.3      | 6.4                     | 8.2            | -              | No           | -               | Demise                    |
| Magnet                              | 1   | Neodymium         | cylinder           | 5.3      | 6.4                     | 19.            |                | Yes          | 1300            | Demise at 77.8km Altitude |
| Fasteners, cabling, misc            | 1   | varies            | -                  | 33.      | -                       | -              | -              | No           | -               | Demise                    |

# **Appendix E.** ELaNa-XIV Component List by CubeSat: RadFXSat

| Name                      | Qty | Material | Body Type | Mass (g) | Diameter/<br>Width (mm) | Length<br>(mm) | Height<br>(mm) | High<br>Temp | Melting<br>Temp | Survivability                               |
|---------------------------|-----|----------|-----------|----------|-------------------------|----------------|----------------|--------------|-----------------|---------------------------------------------|
| Lead ballast              | 1   | Lead     | sheet     | 220.     | 95.                     | 65.3           | 3.1            | No           | -               | Demise                                      |
| Tantalum radiation shield | 2   | Tantalum | sheet     | 3.6      | 9.                      | 24.            | 1.             | Yes          | 2980            | Survives to the Ground with 2J of Energy    |
| Tantalum radiation shield | 1   | Tantalum | sheet     | 2.3      | 9.                      | 15.            | 1.             | Yes          | 2980            | Survives to the Ground with<br>1J of Energy |
| Tantalum radiation shield | 1   | Tantalum | sheet     | 1.9      | 15.                     | 15.            | 0.5            | Yes          | 2980            | Survives to the ground with < 1J of energy  |
| Tantalum radiation shield | 2   | Tantalum | sheet     | 1.1      | 9.                      | 15.            | 0.5            | Yes          | 2980            | Survives to the ground with < 1J of energy  |
| Tantalum radiation shield | 4   | Tantalum | sheet     | 0.8      | 5.                      | 10.            | 1.             | Yes          | 2980            | Survives to the ground with < 1J of energy  |
| Tantalum radiation shield | 4   | Tantalum | sheet     | 0.8      | 6.                      | 8.             | 1.             | Yes          | 2980            | Survives to the ground with < 1J of energy  |
| Tantalum radiation shield | 1   | Tantalum | sheet     | 0.8      | 6.                      | 15.            | 0.5            | Yes          | 2980            | Survives to the ground with < 1J of energy  |
| Tantalum radiation shield | 1   | Tantalum | sheet     | 0.7      | 9.                      | 9.             | 0.5            | Yes          | 2980            | Survives to the ground with < 1J of energy  |
| Tantalum radiation shield | 2   | Tantalum | sheet     | 0.6      | 6.                      | 6.             | 1.             | Yes          | 2980            | Survives to the ground with < 1J of energy  |
| Tantalum radiation shield | 1   | Tantalum | sheet     | 0.3      | 6.                      | 6.             | 0.5            | Yes          | 2980            | Survives to the ground with < 1J of energy  |
| Tantalum radiation shield | 2   | Tantalum | sheet     | 0.1      | 3.5                     | 3.5            | 0.5            | Yes          | 2980            | Survives to the ground with < 1J of energy  |