

This report is presented as compliance with NASA-STD-8719.14, APPENDIX A.

Report Version: 2.3, 07/16/2012

Document Data is Not Restricted.

This document contains no proprietary, ITAR, or export controlled information.

DAS Software Version Used In Analysis: v2.0.1

VERSION APPROVAL and/or FINAL APPROVAL*:

Bruce Yost Program Manager NASA Ames Research Center

Richard Morrison Safety and Mission Assurance Office NASA Ames Research Center

Michel Liu Chief of Safety and Mission Assurance NASA Ames Research Center

PREPARED BY:

Kenny Boronowsky NASA Ames Research Center

Jasper Wolfe NASA Ames Research Center

FINAL APPROVAL*:

Frank Groen Safety and Mission Assurance Office NASA Headquarters

Terrence Wilcutt Chief of Safety and Mission Assurance NASA Headquarters

*Approval signatures indicate acceptance of the ODAR-defined risk.

Record of Revisions						
Rev	DATE	AFFECTED PAGES	DESCRIPTION OF CHANGE	AUTHOR (S)		
A	10/5/2011	All	Initial release	Kenny Boronowsky		
В	10/17/2011	All	Incorporated updates from James Cockrell	Kenny Boronowsky		
C	11/8/2011	5,6,7	Incorporated updates from Rich Morrison	Kenny Boronowsky		
D	03/23/2012	All	Incorporated PhoneSat2.0Beta to mission objectives and subsequent sections	Jasper Wolfe		
Е	05/02/2012	1,2,4	Incorporated updates from James Cockrell	Jasper Wolfe		
F	05/13/2012	2,4	Incorporated updates from Rich Morrison	Jasper Wolfe		
G	07/16/2012	All	Incorporated changes to PhoneSat 1.0 Graham	Chris Hartney		

Table of Contents

<u>Self-assessment and OSMA assessment of the ODAR using the format in</u> <u>Appendix A.2 of NASA-STD-8719.14:</u>

A self assessment is provided below in accordance with the assessment format provided in Appendix A.2 of NASA-STD-8719.14. In the final ODAR document, this assessment will reflect any inputs received from OSMA as well.

Orbital Debris Self-Assessment Report Evaluation: PhoneSat 1.0&2.0Beta Mission

		Launch	n Vehicle			Spacecraft		
Requirement #	Compliant	Not Compliant	Incomplete	Standard Non Compliant	Compliant	Not Compliant	Incomplete	Comments
4.3-1.a			\boxtimes		\boxtimes			No Debris Released in LEO. See note 1.
4.3-1.b			\boxtimes		\boxtimes			No Debris Released in LEO. See note 1.
4.3-2			\boxtimes		\boxtimes			No Debris Released in GEO. See note 1.
4.4-1			\boxtimes		\boxtimes			See note 1.
4.4-2			\boxtimes		\boxtimes			See note 1.
4.4-3			\boxtimes		\boxtimes			No planned breakups. See note 1.
4.4-4			\boxtimes		\boxtimes			No planned breakups. See note 1.
4.5-1			\boxtimes		\boxtimes			See note 1.
4.5-2					\boxtimes			No critical subsystems needed for EOM disposal
4.6-1 (a)			\boxtimes		\boxtimes			See note 1.
4.6-1(b)			\boxtimes		\boxtimes			See note 1.
4.6-1(c)			\boxtimes		\boxtimes			See note 1.
4.6-2			\boxtimes		\boxtimes			See note 1.
4.6-3			\boxtimes		\boxtimes			See note 1.
4.6-4			\boxtimes		\boxtimes			See note 1.
4.6-5			\boxtimes		\boxtimes			See note 1.
4.7-1			\boxtimes		\boxtimes			See note 1.
4.8-1					\boxtimes			No tethers used.

Notes:

1. The primary payload belongs to Orbital. This is not a NASA primary mission. All of the other portions of the launch stack are non-NASA and PhoneSat is not the lead.

Assessment Report Format:

ODAR Technical Sections Format Requirements:

This ODAR follows the format in NASA-STD-8719.14, Appendix A.1 and includes the content indicated at a minimum in each section 2 through 8 below for the PhoneSat 1.0 and PhoneSat 2.0Beta satellite. Sections 9 through 14 apply to the launch vehicle ODAR and are not covered here.

PhoneSat 1.0 & PhoneSat 2.0Beta

ODAR Section 1: Program Management and Mission Overview

Mission Directorate: OCT, Office of the Chief Technologist (OCT), James Reuther, Director, Cross-cutting Demonstration Division (CCDD)

Program Executive: Andrew Petro, CCDD

Program/project manager: Bruce Yost, ARC

Senior Management: Al Weston, ARC

Foreign government or space agency participation: None.

Summary of NASA's responsibility under the governing agreement(s): N/A.

Schedule of upcoming mission milestones:

FRR:	July 2012
Launch:	September 22, 2012

Mission Overview:

The PhoneSat mission is a group of three 1U CubeSats that will launch as secondary payloads on the Orbital Science Antares maiden flight. There will be two PhoneSat 1.0 units and one PhoneSat 2.0Beta unit. The primary payload is the Orbital Science Cygnus Mass Simulator and is a non functional mass dummy. The PhoneSat 1.0 and 2.0Beta satellites will orbit in Low Earth Orbit (LEO) and primarily determine the feasibility of using a modern smart phone as the main avionics and flight computer for satellites. The second PhoneSat 1.0 unit, named "Graham", will be largely identical to the first with the addition of a Quake Global's Iridium modem, an Orbcomm Modem, and altered on board processing, and added magnetic rod passive attitude stabilization, to support the modems. The primary mission for the "Bell" PhoneSat 1.0 satellite will last 10 days until the onboard batteries die, and the "Graham" PhoneSat 1.0 satellite will last 6 days until deorbit. The primary mission for the PhoneSat 2.0Beta satellite will function for 10 days before depleting the batteries over 3 days. The mission ends with atmospheric reentry of all three satellites within two weeks from launch, due to the low altitude orbit.

All three PhoneSat satellites are integrated into a single ISIS ISIPOD CubeSat deployer at NASA Ames prior to launch and are shipped to the launch site where there ISIPOD will be bolted onto the upper stage of the Antares launch vehicle. The ISIPOD provides a full enclosure of the satellites until deployment in orbit. The

satellites will operate in a circular orbit, and with no propulsion systems. Bell will operate with no stabilization or attitude control. Graham will use magnetic rod passive stabilization to keep the antennas oriented in the desired direction. Alexander has three-axis reaction wheel and magnetorquer attitude control systems,.

Launch vehicle and launch site: Antares (formerly Taurus II), Wallops Flight Facility, VA.

Proposed launch date: 22/09/2012

Mission duration: 10 Days or less in LEO operations until reentry via atmospheric orbital decay ~10 days.

Launch and deployment profile, including all parking, transfer, and operational orbits with apogee, perigee, and inclination:

The primary payload belongs to Orbital. This is not a NASA primary mission. All of the other portions of the launch stack are non-NASA and PhoneSat is not the lead.

The Antares will launch into a circular orbit. Once the final stage has burned out, the secondary payloads will be dispensed. After the secondary payloads are clear, the primary payload will separate. All payloads including the primary will burn up and reenter within a couple of weeks of launch due to the low orbit.

The PhoneSat 1.0 and 2.0Beta satellites are deployed to, and decay naturally from an operational circular orbit defined as follows:

Apogee: 270 km

Perigee: 270 km

Inclination: 51 degrees.

The satellites have no propulsion and therefore do not actively change orbits. There is no parking or transfer orbit.

ODAR Section 2: Spacecraft Description

Physical description of the spacecraft:

The PhoneSat mission consists of 3 satellites. Two of the satellites are PhoneSat version 1.0, "Graham" and "Bell", and the third satellite is a PhoneSat version 2.0Beta, "Alexander". The first PhoneSat 1.0 satellite, "Graham", will have the Quake Global's Iridium modem experiment, as well as SPA hardware to operate it, and an Orbcomm modem. The second PhoneSat 1.0 satellite, "Bell", has an attached Quake Global's Iridium modem experiment. Figure 2 shows the three satellites. Graham and Alexander have dimensions 11.13 cm x 11.13 cm x 11.13 cm. Bell is the same dimension except it has a cylindrical extension that is 4.5cm long and 7.2 cm in diameter on one side. None of the satellites have titanium parts. Graham will have a Canon BP-930 battery, Bell will have 12 Lithium-Ion batteries, and Bell has an additional 3 AA Lithium Iron Disulfide primary cells. Alexander has 4 Lithium-Ion batteries and solar panels on all 6 faces for charging. All of the batteries are described in more detail below.

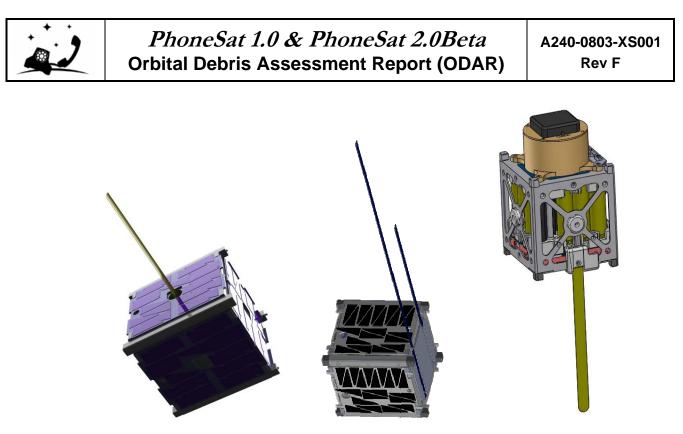


Figure 2: PhoneSat 2.0Beta (Left), PhoneSat 1.0 (Middle), PhoneSat 1.0 with attached experiment (Right)

Total satellite mass (3 satellites) at launch, including all propellants and fluids: ~3.846 kg.

Alexander Mass: ~1.3 kg

Graham Mass: ~1.25 kg

Bell Mass: ~ 1.426 kg

Dry mass of satellites at launch, excluding solid rocket motor propellants: ~3.846 kg

Alexander Mass: ~1.3 kg Graham Mass: ~1.25 kg Bell Mass: ~ 1.426 kg

Description of all propulsion systems (cold gas, mono-propellant, bi-propellant, electric, nuclear): None.

Identification, including mass and pressure, of all fluids (liquids and gases) planned to be on board and a description of the fluid loading plan or strategies, excluding fluids in sealed heat pipes: None

Fluids in Pressurized Batteries: None. PhoneSat 1.0 and PhoneSat 2.0Beta use unpressurized standard COTS Lithium-Ion battery cells. The Quake Global's Iridium modem use unpressurized standard COTS AA Lithium Iron Disulfide battery cells.

Description of attitude control system and indication of the normal attitude of the spacecraft with respect to the velocity vector: Bell has none, it isin a free tumble and uncontrolled. Alexander has active three-axis attitude control by means of three orthogonal reaction wheels and three orthogonal sets of two magnetorquer coils, and has one-axis attitude determination; limiting the capability of the three-axis control system. Graham has magnetic rod passive stabilization.

The satellites are cubical in shape – all of the sides have identical surface areas.

Description of any range safety or other pyrotechnic devices: No pyrotechnic devices are used.

Description of the electrical generation and storage system: Standard COTS Lithium-Ion battery cells and Lithium Iron Disulfide battery cells are charged before payload integration and provide electrical energy during the mission. For Bell and the Iridium modem extension to Bell; these batteries are used until depleted. For Alexander and Graham solar panels and charging circuit recharge the batteries. Graham and Bell carry 12 Lithium-Ion battery cells in the 18650 cell format. Bell has 3 AA Lithium Iron Disulfide primary cells dedicated to the Iridium modem experiment. Alexander carries 4 Lithium-Ion battery cells in the 18650 cell format.

Identification of any other sources of stored energy not noted above: None.

Identification of any radioactive materials on board: None.

ODAR Section 3: Assessment of Spacecraft Debris Released during Normal Operations

Identification of any object (>1 mm) expected to be released from the spacecraft any time after launch, including object dimensions, mass, and material: There are no intentional releases.

Rationale/necessity for release of each object: N/A.

Time of release of each object, relative to launch time: N/A.

Release velocity of each object with respect to spacecraft: N/A.

Expected orbital parameters (apogee, perigee, and inclination) of each object after release: N/A.

 $\label{eq:calculated} \mbox{ calculated orbital lifetime of each object, including time spent in Low Earth Orbit (LEO): N/A.}$

Assessment of spacecraft compliance with Requirements 4.3-1 and 4.3-2 (per DAS v2.0.1)

4.3-1, Mission Related Debris Passing Through LEO: COMPLIANT

4.3-2, Mission Related Debris Passing Near GEO: COMPLIANT

ODAR Section 4: Assessment of Spacecraft Intentional Breakups and Potential for Explosions.

Potential causes of spacecraft breakup during deployment and mission operations:

There is no credible scenario that would result in spacecraft breakup during normal deployment and operations.

Summary of failure modes and effects analyses of all credible failure modes which may lead to an accidental explosion:

In-mission failure of a battery cell protection circuit could lead to a short circuit resulting in overheating and a very remote possibility of battery cell explosion. The battery safety systems discussed in the FMEA (see requirement 4.4-1 below) describe the combined faults that must occur for any of seven (7) independent, mutually exclusive failure modes to lead to explosion. The rationale is true for all batteries onboard the spacecrafts.

There is no credible scenario in which the reaction wheel energy would exceed the breakup/explosion energy required for the reaction wheel material to breakup/explode. The supporting analysis is described in the FMEA below.

Detailed plan for any designed spacecraft breakup, including explosions and intentional collisions:

There are no planned breakups.

List of components which shall be passivated at End of Mission (EOM) including method of passivation and amount which cannot be passivated:

Alexander incorporates logic in the watchdog to turn off the solar cell electrical generation system after completion of the mission. Ground tests indicate that the battery packs will be completely discharged within 3 days of turning off the electrical generation system. Graham has no components that require passivation.

Rationale for all items which are required to be passivated, but cannot be due to their design:

Due to the extremely short duration of the mission before passive reentry and burn up, the Lithium-Ion batteries were deemed not necessary to passivate for EOM. Ground tests indicate that for Bell the battery packs will be completely discharged within 10 days of the mission from regular satellite power usage due to no power generation capabilities onboard the satellites. Similarly, the Lithium Iron Disulfide batteries on Bell will be completely discharged within 2 days of mission initiation.

Assessment of spacecraft compliance with Requirements 4.4-1 through 4.4-4:

Requirement 4.4-1: Limiting the risk to other space systems from accidental explosions during deployment and mission operations while in orbit about Earth or the Moon:

For each spacecraft and launch vehicle orbital stage employed for a mission, the program or project shall demonstrate, via failure mode and effects analyses or equivalent analyses, that the integrated probability of explosion for all credible failure modes of each spacecraft and launch vehicle is less than 0.001 (excluding small particle impacts) (Requirement 56449).

Compliance statement:

Required Probability: 0.001. Expected probability: 0.000.

Supporting Rationale and FMEA details:

Battery explosion:

Effect: All failure modes below might result in battery explosion with the possibility of orbital debris generation. However, in the unlikely event that a battery cell does explosively rupture, the small size, mass, and potential energy, of these small batteries is such that while the spacecraft could be expected to vent gases, most debris from the battery rupture should be contained within the vessel due to the lack of penetration energy. The rationale is true for all batteries onboard the spacecrafts.

Probability: Very Low. It is believed to be less than 0.1% given that multiple independent (not common mode) faults must occur for each failure mode to cause the ultimate effect (explosion).

Failure mode 1: Internal short circuit.

Mitigation 1: Complete qualification and acceptance shock, vibration, thermal cycling, and vacuum tests followed by maximum system rate-limited charge and discharge to prove that no internal short circuit sensitivity exists.

Combined faults required for realized failure: Environmental testing <u>AND</u> functional charge/discharge tests must both be ineffective in discovery of the failure mode.

Failure Mode 2: Internal thermal rise due to high load discharge rate.

Mitigation 2: Cells were tested in lab for high load discharge rates in a variety of flight like configurations to determine if the feasibility of an out of control thermal rise in the cell. Cells were also tested in a hot environment to test the upper limit of the cells capability. No failures were seen.

Combined faults required for realized failure: Spacecraft thermal design must be incorrect **<u>AND</u>** external over current detection and disconnect function must fail to enable this failure mode.

Failure Mode 3: Excessive discharge rate or short circuit due to external device failure or terminal contact with conductors not at battery voltage levels (due to abrasion or inadequate proximity separation).

Mitigation 4: This failure mode is negated by a) qualification tested short circuit protection on each external circuit, b) design of battery packs and insulators such that no contact with nearby board traces is possible without being caused by some other mechanical failure, c) obviation of such other mechanical failures by proto-qualification and acceptance environmental tests (shock, vibration, thermal cycling, and thermal-vacuum tests).

Combined faults required for realized failure: An external load must fail/short-circuit <u>AND</u> external over-current detection and disconnect function must all occur to enable this failure mode.

Failure Mode 4: Inoperable vents.

Mitigation 5: Battery vents are not inhibited by the battery holder design or the spacecraft. *Combined effects required for realized failure:* The manufacturer fails to install proper venting.

Failure Mode 5: Crushing.

Mitigation 6: This mode is negated by spacecraft design. There are no moving parts in the proximity of the batteries.

Combined faults required for realized failure: A catastrophic failure must occur in an external system <u>AND</u> the failure must cause a collision sufficient to crush the batteries leading to an internal short circuit <u>AND</u> the satellite must be in a naturally sustained orbit at the time the crushing occurs.

Failure Mode 6: Low level current leakage or short-circuit through battery pack case or due to moisture-based degradation of insulators.

Mitigation 7: These modes are negated by a) battery holder/case design made of nonconductive plastic, and b) operation in vacuum such that no moisture can affect insulators. *Combined faults required for realized failure:* Abrasion or piercing failure of circuit board coating or wire insulators <u>AND</u> dislocation of battery packs <u>AND</u> failure of battery terminal insulators <u>AND</u> failure to detect such failures in environmental tests must occur to result in this failure mode.

Failure Mode 7: Excess temperatures due to orbital environment and high discharge combined. *Mitigation 8:* The spacecraft thermal design will negate this possibility. Thermal rise has been analyzed in combination with space environment temperatures showing that batteries do not exceed normal allowable operating temperatures which are well below temperatures of concern for explosions.

Combined faults required for realized failure: Thermal analysis <u>AND</u> thermal design <u>AND</u> mission simulations in thermal-vacuum chamber testing <u>AND</u> over-current monitoring and control must all fail for this failure mode to occur.

Reaction wheel breakup/explosion:

There is no credible scenario that would result in the reaction wheels to breakup during normal deployment and operations. Each of the three reaction wheels are COTS with a moment of inertia of 81e-06 kg.m² and a maximum spin rate of 7000 RPM. The subsequent maximum energy is 21.8 Joules; substantially less than the breakup/explosion energy of the reaction wheel material.

Requirement 4.4-2: Design for passivation after completion of mission operations while in orbit about Earth or the Moon:

Design of all spacecraft and launch vehicle orbital stages shall include the ability to deplete all onboard sources of stored energy and disconnect all energy generation sources when they are no longer required for mission operations or post mission disposal or control to a level which can not cause an explosion or deflagration large enough to release orbital debris or break up the spacecraft (Requirement 56450).

Compliance statement:

Bell is designed to completely discharge battery packs within 10 days during the mission since there is no re-charge or power generation capabilities onboard the satellites. The Quake Global's Iridium on Bell is designed to completely discharge battery packs within 2 days during the mission; there is no re-charge or power generation capabilities on the extension to the Bell Satellite. Alexander is designed to completely discharge battery packs within 3 days of turning off the electrical generation system. The satellites are programmed to continue functioning in normal operations until the battery packs are totally discharged. Since Graham will only be on orbit for 6 days based on the DAS analysis shown in Figure 4, no postmission passivation will be performed, as the satellite will break up on re-entry at the end of the mission.

Requirement 4.4-3. Limiting the long-term risk to other space systems from planned breakups:

Compliance statement:

This requirement is not applicable. There are no planned breakups.

Requirement 4.4-4: Limiting the short-term risk to other space systems from planned breakups:

Compliance statement:

This requirement is not applicable. There are no planned breakups.

ODAR Section 5: Assessment of Spacecraft Potential for On-Orbit <u>Collisions</u>

Assessment of spacecraft compliance with Requirements 4.5-1 and 4.5-2 (per DAS v2.0.1, and calculation methods provided in NASA-STD-8719.14, section 4.5.4):

Requirement 4.5-1. Limiting debris generated by collisions with large objects when operating in Earth orbit: For each spacecraft and launch vehicle orbital stage in or passing through LEO, the

program or project shall demonstrate that, during the orbital lifetime of each spacecraft and orbital stage, the probability of accidental collision with space objects larger than 10 cm in diameter is less than 0.001 (Requirement 56506).

Large Object Impact and Debris Generation Probability: 0.00000; COMPLIANT.

Requirement 4.5-2. Limiting debris generated by collisions with small objects when operating in Earth or lunar orbit: For each spacecraft, the program or project shall demonstrate that, during the mission of the spacecraft, the probability of accidental collision with orbital debris and meteoroids sufficient to prevent compliance with the applicable postmission disposal requirements is less than 0.01 (Requirement 56507).

- Small Object Impact and Debris Generation Probability: 0.00000; COMPLIANT
- Identification of all systems or components required to accomplish any postmission disposal operation, including passivation and maneuvering:

None.

ODAR Section 6: Assessment of Spacecraft Postmission Disposal Plans and Procedures

- **6.1 Description of spacecraft disposal option selected:** The satellite will de-orbit naturally by atmospheric re-entry. There is no propulsion system.
- 6.2 Plan for any spacecraft maneuvers required to accomplish postmission disposal: NONE.
- **6.3** Calculation of area-to-mass ratio after postmission disposal, if the controlled reentry option is not selected:

Spacecraft Mass: ~1.426kg (greatest mass of three)

Cross-sectional Area: 0.01 m² (Calculated by DAS 2.0.1).

Area to mass ratio: $0.01/1.426 = 0.007 \text{ m}^2/\text{kg}$

6.4 Assessment of spacecraft compliance with Requirements 4.6-1 through 4.6-5 (per DAS v 2.0.1 and NASA-STD-8719.14 section):

Requirement 4.6-1. Disposal for space structures passing through LEO: A spacecraft or orbital stage with a perigee altitude below 2000 km shall be disposed of by one of three methods: (Requirement 56557)

a. Atmospheric reentry option:

- Leave the space structure in an orbit in which natural forces will lead to atmospheric reentry within 25 years after the completion of mission but no more than 30 years after launch; or
- Maneuver the space structure into a controlled de-orbit trajectory as soon as practical after completion of mission.

b. Storage orbit option: Maneuver the space structure into an orbit with perigee altitude greater than 2000 km and apogee less than GEO - 500 km.

c. Direct retrieval: Retrieve the space structure and remove it from orbit within 10 years after completion of mission.

Analysis: The PhoneSat satellites reentry is COMPLIANT using method "a.". The PhoneSats will be left in a 270 km circular orbit, reentering in ~10 days after launch with orbit history as shown in Figure 3 (analysis assumes an approximate random tumbling behavior).

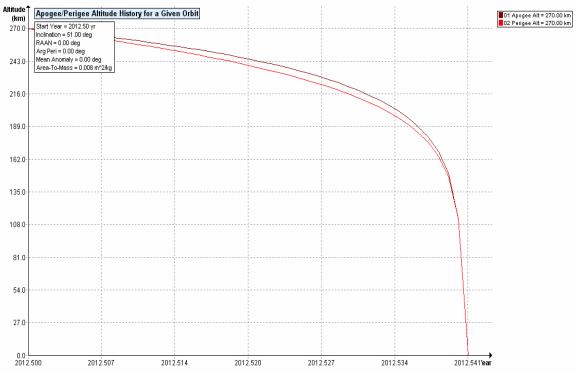


Figure 3, PhoneSat Orbit History for "Alexander" and "Bell" Satellites.

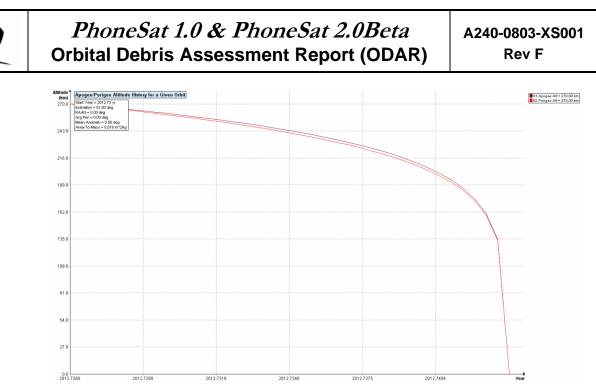


Figure 4, PhoneSat Orbit History for "Graham" Satellite.

Requirement 4.6-2. Disposal for space structures near GEO.

Analysis: Not applicable. The three satellite orbits are in LEO.

Requirement 4.6-3. Disposal for space structures between LEO and GEO.

Analysis: Not applicable. The three satellite orbits are in LEO.

Requirement 4.6-4. Reliability of Postmission Disposal Operations

Analysis: Not applicable. The satellites will reenter passively without post mission disposal operations within allowable timeframe.

ODAR Section 7: Assessment of Spacecraft Reentry Hazards

Assessment of spacecraft compliance with Requirement 4.7-1:

Requirement 4.7-1. Limit the risk of human casualty: The potential for human casualty is assumed for any object with an impacting kinetic energy in excess of 15 joules:

a) For uncontrolled reentry, the risk of human casualty from surviving debris shall not exceed 0.0001 (1:10,000) (Requirement 56626).

Summary Analysis Results: DAS v2.0.1 reports that the PhoneSats are compliant with the requirement. No components reach the ground. Total human casualty probability is reported by the DAS software as 1:0. This is an erroneous output, presumably meaning a probability of zero.

Analysis (per DAS v2.0.1):

```
05 25 2012; 14:32:10PM DAS Application Started
05 25 2012; 14:32:10PM Opened Project C:\Program Files\NASA\DAS
2.0\project\PhoneSat\
05 25 2012; 14:32:20PM Processing Requirement 4.3-1: Return Status : Not Run
_____
No Project Data Available
_____
05 25 2012; 14:32:22PM Processing Requirement 4.3-2: Return Status : Passed
_____
No Project Data Available
05 25 2012; 14:32:25PM Requirement 4.4-3: Compliant
05 25 2012; 14:32:29PM Processing Requirement 4.5-1: Return Status : Passed
Run Data
==================
**INPUT**
    Space Structure Name = PhoneSat 2.0Beta (Alexander)
    Space Structure Type = Payload
    Perigee Altitude = 270.000000 (km)
    Apogee Altitude = 270.000000 (km)
    Inclination = 51.000000 (deg)
    RAAN = 0.000000 (deg)
    Argument of Perigee = 0.000000 (deg)
        Once this document has been printed it will be considered an uncontrolled document.
```

```
Page 18 of 35
```



```
Mean Anomaly = 0.000000 (deg)
     Final Area-To-Mass Ratio = 0.007700 (m<sup>2</sup>/kg)
     Start Year = 2012.500000 (yr)
     Initial Mass = 1.300000 (kg)
     Final Mass = 1.300000 (kg)
     Duration = 0.027300 (yr)
     Station-Kept = False
     Abandoned = True
     PMD Perigee Altitude = -1.000000 (km)
     PMD Apogee Altitude = -1.000000 (km)
     PMD Inclination = 0.000000 (deg)
     PMD RAAN = 0.000000 (deg)
     PMD Argument of Perigee = 0.000000 (deg)
     PMD Mean Anomaly = 0.000000 (deg)
**OUTPUT**
     Collision Probability = 0.000000
     Returned Error Message: Normal Processing
     Date Range Error Message: Normal Date Range
     Status = Pass
_____
 **INPUT**
 Space Structure Name = Graham Satellite
 Space Structure Type = Payload
 Perigee Altitude = 270.000000 (km)
 Apogee Altitude = 270.000000 (km)
 Inclination = 51.000000 (deg)
 RAAN = 0.000000 (deq)
 Argument of Perigee = 0.000000 (deg)
 Mean Anomaly = 0.000000 (deg)
 Final Area-To-Mass Ratio = 0.008000 (m<sup>2</sup>/kg)
 Start Year = 2012.000000 (yr)
 Initial Mass = 1.250000 (kg)
 Final Mass = 1.250000 (kg)
 Duration = 0.017270 (yr)
 Station-Kept = False
 Abandoned = True
 PMD Perigee Altitude = -1.000000 (km)
 PMD Apogee Altitude = -1.000000 (km)
 PMD Inclination = 0.000000 (deg)
 PMD RAAN = 0.000000 (deg)
 PMD Argument of Perigee = 0.000000 (deg)
 PMD Mean Anomaly = 0.000000 (deg)
 **OUTPUT**
 Collision Probability = 0.000000
 Returned Error Message: Normal Processing
 Date Range Error Message: Normal Date Range
 Status = Pass
```



```
==================
```

```
**INPUT**
     Space Structure Name = PhoneSat 1.0 (Bell)
     Space Structure Type = Payload
     Perigee Altitude = 270.000000 (km)
     Apogee Altitude = 270.000000 (km)
     Inclination = 51.000000 (deg)
     RAAN = 0.000000 (deg)
     Argument of Perigee = 0.000000 (deg)
     Mean Anomaly = 0.000000 (deg)
     Final Area-To-Mass Ratio = 0.007700 (m<sup>2</sup>/kg)
     Start Year = 2012.500000 (yr)
     Initial Mass = 1.426000 (kg)
     Final Mass = 1.426000 (kg)
     Duration = 0.027300 (yr)
     Station-Kept = False
     Abandoned = True
     PMD Perigee Altitude = -1.000000 (km)
     PMD Apogee Altitude = -1.000000 (km)
     PMD Inclination = 0.000000 (deg)
     PMD RAAN = 0.000000 (deg)
     PMD Argument of Perigee = 0.000000 (deg)
     PMD Mean Anomaly = 0.000000 (deg)
**OUTPUT**
     Collision Probability = 0.000000
     Returned Error Message: Normal Processing
     Date Range Error Message: Normal Date Range
     Status = Pass
_____
05 25 2012; 14:32:32PM Requirement 4.5-2: Compliant
05 25 2012; 14:32:33PM Processing Requirement 4.6
                                                  Return Status : Passed
_____
Project Data
=================
**INPUT**
     Space Structure Name = PhoneSat 2.0Beta (Alexander)
     Space Structure Type = Payload
     Perigee Altitude = 270.000000 (km)
     Apoqee Altitude = 270.000000 (km)
     Inclination = 51.000000 (deg)
     RAAN = 0.000000 (deg)
     Argument of Perigee = 0.000000 (deg)
```

```
Once this document has been printed it will be considered an uncontrolled document.
Page 20 of 35
```



```
Mean Anomaly = 0.000000 (deg)
      Area-To-Mass Ratio = 0.007700 (m^2/kg)
      Start Year = 2012.500000 (yr)
      Initial Mass = 1.300000 (kg)
      Final Mass = 1.300000 (kg)
      Duration = 0.027300 (yr)
      Station Kept = False
      Abandoned = True
      PMD Perigee Altitude = 225.835229 (km)
      PMD Apogee Altitude = 232.137354 (km)
      PMD Inclination = 50.995205 (deg)
      PMD RAAN = 305.428377 (deg)
      PMD Argument of Perigee = 21.906970 (deg)
      PMD Mean Anomaly = 0.000000 (deg)
**OUTPUT**
      Suggested Perigee Altitude = 225.835229 (km)
      Suggested Apogee Altitude = 232.137354 (km)
      Returned Error Message = Passes LEO reentry orbit criteria.
     Released Year = 2012 (yr)
     Requirement = 61
      Compliance Status = Pass
==================
 **INPUT**
 Space Structure Name = Graham Satellite
 Space Structure Type = Payload
 Perigee Altitude = 270.000000 (km)
 Apogee Altitude = 270.000000 (km)
 Inclination = 51.000000 (deg)
 RAAN = 0.000000 (deg)
 Argument of Perigee = 0.000000 (deg)
 Mean Anomaly = 0.000000 (deg)
 Area-To-Mass Ratio = 0.008000 \text{ (m}^2/\text{kg})
 Start Year = 2012.000000 (yr)
 Initial Mass = 1.250000 (kg)
 Final Mass = 1.250000 (kg)
 Duration = 0.017270 (yr)
 Station Kept = False
 Abandoned = True
 PMD Perigee Altitude = 246.965765 (km)
 PMD Apogee Altitude = 251.728237 (km)
 PMD Inclination = 50.997506 (deg)
 PMD RAAN = 325.612077 (deg)
 PMD Argument of Perigee = 15.751721 (deg)
 PMD Mean Anomaly = 0.000000 (deg)
```

```
**OUTPUT**
```



```
Suggested Perigee Altitude = 246.965765 (km)
 Suggested Apogee Altitude = 251.728237 (km)
 Returned Error Message = Passes LEO reentry orbit criteria.
 Released Year = 2012 (yr)
 Requirement = 61
 Compliance Status = Pass
_____
**INPUT**
     Space Structure Name = PhoneSat 1.0 (Bell)
     Space Structure Type = Payload
     Perigee Altitude = 270.000000 (km)
     Apoqee Altitude = 270.000000 (km)
     Inclination = 51.000000 (deg)
     RAAN = 0.000000 (deg)
     Argument of Perigee = 0.000000 (deg)
     Mean Anomaly = 0.000000 (deg)
     Area-To-Mass Ratio = 0.007700 (m<sup>2</sup>/kg)
     Start Year = 2012.500000 (yr)
     Initial Mass = 1.426000 (kg)
     Final Mass = 1.426000 (kg)
     Duration = 0.027300 (yr)
     Station Kept = False
     Abandoned = True
     PMD Perigee Altitude = 225.835229 (km)
     PMD Apogee Altitude = 232.137354 (km)
     PMD Inclination = 50.995205 (deg)
     PMD RAAN = 305.428377 (deg)
     PMD Argument of Perigee = 21.906970 (deg)
     PMD Mean Anomaly = 0.000000 (deg)
**OUTPUT**
     Suggested Perigee Altitude = 225.835229 (km)
     Suggested Apogee Altitude = 232.137354 (km)
     Returned Error Message = Passes LEO reentry orbit criteria.
     Released Year = 2012 (yr)
     Requirement = 61
     Compliance Status = Pass
===================
05 25 2012; 14:32:37PM *******Processing Requirement 4.7-1
     Return Status : Passed
Item Number = 1
```


name = PhoneSat 2.0Beta (Alexander) quantity = 1parent = 0materialID = 2type = BoxAero Mass = 1.300000Thermal Mass = 1.300000Diameter/Width = 0.100000 Length = 0.100000Height = 0.100000name = CubeSat Structure (Alexander) quantity = 1parent = 1materialID = 7type = BoxAero Mass = 0.381300Thermal Mass = 0.381300Diameter/Width = 0.100000 Length = 0.100000Height = 0.100000name = Solar Cells (Alexander) quantity = 100parent = 1materialID = 24type = Flat Plate Aero Mass = 0.000239Thermal Mass = 0.000239Diameter/Width = 0.012700 Length = 0.031650name = Magnetorquer Board (Alexander) quantity = 6parent = 1materialID = 19 type = Flat Plate Aero Mass = 0.033900Thermal Mass = 0.033900Diameter/Width = 0.082600 Length = 0.104800name = Reaction Control System (Alexander) quantity = 1parent = 1materialID = 76 type = Box Aero Mass = 0.050000Thermal Mass = 0.050000Diameter/Width = 0.025400Length = 0.076200Height = 0.025400name = PCB (Alexander)

quantity = 6parent = 1materialID = 23 type = Flat Plate Aero Mass = 0.020000Thermal Mass = 0.020000Diameter/Width = 0.080000Length = 0.080000name = Nexus S (Alexander) quantity = 1parent = 1materialID = 76 type = Box (Alexander) Aero Mass = 0.102600Thermal Mass = 0.102600Diameter/Width = 0.060000Length = 0.100000Height = 0.015000name = Batteries (Alexander) quantity = 4parent = 1materialID = 58 type = Cylinder Aero Mass = 0.045600Thermal Mass = 0.045600Diameter/Width = 0.019100 Length = 0.061900name = Microhard MHX2420 (Alexander) quantity = 1parent = 1materialID = 5type = BoxAero Mass = 0.055000Thermal Mass = 0.055000Diameter/Width = 0.053400Length = 0.089000Height = 0.017800name = StenSat (Alexander) quantity = 1parent = 1materialID = 5type = BoxAero Mass = 0.059300Thermal Mass = 0.059300Diameter/Width = 0.091100 Length = 0.095500Height = 0.010000name = Battery Holder (Alexander) quantity = 1

parent = 1materialID = 76type = BoxAero Mass = 0.029300Thermal Mass = 0.029300Diameter/Width = 0.085000Length = 0.086800Height = 0.021200name = Fasteners (Alexander) quantity = 4parent = 1materialID = 54type = Cylinder Aero Mass = 0.005000Thermal Mass = 0.005000Diameter/Width = 0.003000Length = 0.100000Item Number = 1name = PhoneSat 2.0Beta (Alexander) Demise Altitude = 77.992957 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 name = CubeSat Structure (Alexander) Demise Altitude = 73.126168 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 name = Solar Cells (Alexander) Demise Altitude = 77.968605 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 name = Magnetorguer Board (Alexander) Demise Altitude = 76.983074 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 name = Reaction Control System (Alexander) Demise Altitude = 77.522011 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 name = PCB (Alexander) Demise Altitude = 77.396707

Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 ****** name = Nexus S (Alexander) Demise Altitude = 77.372535 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 ***** name = Batteries (Alexander) Demise Altitude = 69.239136 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 name = Microhard MHX2420 (Alexander) Demise Altitude = 75.899238 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 name = StenSat (Alexander) Demise Altitude = 76.056168 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 ******************************** name = Battery Holder (Alexander) Demise Altitude = 77.837933 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 name = Fasteners (Alexander) Demise Altitude = 76.024605 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 Item Number = 2name = Satellite quantity = 1parent = 0materialID = 8 type = BoxAero Mass = 1.250000Thermal Mass = 1.250000 Diameter/Width = 0.100000Length = 0.100000Height = 0.100000

name = Battery quantity = 1parent = 1materialID = 39 type = BoxAero Mass = 0.181000Thermal Mass = 0.181000Diameter/Width = 0.040000 Length = 0.070000Height = 0.038000name = Quake Iridium Modem quantity = 1parent = 1 materialID = 5 type = BoxAero Mass = 0.114000Thermal Mass = 0.114000Diameter/Width = 0.064000Length = 0.064000Height = 0.016000name = Iridium Patch Antenna quantity = 1parent = 1materialID = 5type = BoxAero Mass = 0.043000Thermal Mass = 0.043000Diameter/Width = 0.043400 Length = 0.046000Height = 0.011400name = Iridium 9602 quantity = 1parent = 1materialID = 5 type = BoxAero Mass = 0.027000Thermal Mass = 0.027000Diameter/Width = 0.041000 Length = 0.045000Height = 0.013000name = Full Size PCP quantity = 3parent = 1materialID = 77type = BoxAero Mass = 0.010000Thermal Mass = 0.010000Diameter/Width = 0.095000 Length = 0.095000

Height = 0.002000

name = Battery Plate quantity = 1parent = 1 materialID = 8 type = Flat Plate Aero Mass = 0.040000Thermal Mass = 0.040000Diameter/Width = 0.095000 Length = 0.095000name = NanoRTU quantity = 4parent = 1 materialID = 77type = Flat Plate Aero Mass = 0.003000Thermal Mass = 0.003000Diameter/Width = 0.032000Length = 0.032000name = NanoRTU lite quantity = 1parent = 1 materialID = 77 type = Flat Plate Aero Mass = 0.006000Thermal Mass = 0.006000Diameter/Width = 0.032000 Length = 0.064000name = StenSat Beacon quantity = 1parent = 1 materialID = 77type = Flat Plate Aero Mass = 0.020000Thermal Mass = 0.020000Diameter/Width = 0.045000 Length = 0.080000Item Number = 2name = Satellite Demise Altitude = 77.997988 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 name = Battery

Demise Altitude = 77.632136 Debris Casualty Area = 0.000000


```
Impact Kinetic Energy = 0.000000
 name = Ouake Iridium Modem
 Demise Altitude = 72.917113
 Debris Casualty Area = 0.000000
 Impact Kinetic Energy = 0.000000
 ********************************
 name = Iridium Patch Antenna
 Demise Altitude = 74.557941
 Debris Casualty Area = 0.000000
 Impact Kinetic Energy = 0.000000
 *****
 name = Iridium 9602
 Demise Altitude = 75.761402
 Debris Casualty Area = 0.000000
 Impact Kinetic Energy = 0.000000
 name = Full Size PCP
 Demise Altitude = 77.935535
 Debris Casualty Area = 0.000000
 Impact Kinetic Energy = 0.000000
 name = Battery Plate
 Demise Altitude = 76.726066
 Debris Casualty Area = 0.000000
 Impact Kinetic Energy = 0.000000
 name = NanoRTU
 Demise Altitude = 77.880371
 Debris Casualty Area = 0.000000
 Impact Kinetic Energy = 0.000000
 name = NanoRTU lite
 Demise Altitude = 77.872590
 Debris Casualty Area = 0.000000
 Impact Kinetic Energy = 0.000000
 ********************************
 name = StenSat Beacon
 Demise Altitude = 77.738410
 Debris Casualty Area = 0.000000
 Impact Kinetic Energy = 0.000000
```

```
Item Number = 3
```


name = PhoneSat 1.0 (Bell) quantity = 1parent = 0materialID = 2 type = BoxAero Mass = 1.426000Thermal Mass = 1.426000Diameter/Width = 0.100000 Length = 0.100000Height = 0.100000name = CubeSat Structure (Bell) quantity = 1parent = 1 materialID = 7type = BoxAero Mass = 0.381300Thermal Mass = 0.381300Diameter/Width = 0.100000Length = 0.100000Height = 0.100000name = PCB (Bell) quantity = 1parent = 1materialID = 23type = Flat Plate Aero Mass = 0.020000Thermal Mass = 0.020000Diameter/Width = 0.080000 Length = 0.080000name = Nexus One (Bell) quantity = 1parent = 1materialID = 76type = BoxAero Mass = 0.102600Thermal Mass = 0.102600Diameter/Width = 0.060000 Length = 0.100000Height = 0.015000name = Battery Holder (Bell) quantity = 1parent = 1materialID = 76type = BoxAero Mass = 0.029300Thermal Mass = 0.029300Diameter/Width = 0.085000Length = 0.086800Height = 0.021200

name = Batteries (Bell) quantity = 12parent = 1materialID = 58 type = Cylinder Aero Mass = 0.045600Thermal Mass = 0.045600Diameter/Width = 0.019100 Length = 0.061900name = Fasteners (Bell) quantity = 4parent = 1materialID = 58 type = Cylinder Aero Mass = 0.005000Thermal Mass = 0.005000Diameter/Width = 0.003000 Length = 0.100000name = Quake Iridium Modem (Bell) quantity = 1parent = 1materialID = 5type = BoxAero Mass = 0.114000Thermal Mass = 0.114000Diameter/Width = 0.064000 Length = 0.064000Height = 0.016000name = Iridium Antenna (Bell) quantity = 1parent = 1materialID = 5type = BoxAero Mass = 0.043000Thermal Mass = 0.043000Diameter/Width = 0.043400 Length = 0.046000Height = 0.011400name = Iridium 9602 (Bell) quantity = 1parent = 1materialID = 5type = BoxAero Mass = 0.027000Thermal Mass = 0.027000Diameter/Width = 0.041000Length = 0.045000Height = 0.013000

name = Batteries Iridium (Bell) quantity = 4parent = 1materialID = 58 type = Cylinder Aero Mass = 0.045600Thermal Mass = 0.045600Diameter/Width = 0.019100 Length = 0.061900name = Iridium Electronics (Bell) quantity = 1parent = 1materialID = 19 type = Flat Plate Aero Mass = 0.010000Thermal Mass = 0.010000Diameter/Width = 0.030000 Length = 0.030000name = Iridium Canister (Bell) quantity = 1parent = 1materialID = 8 type = BoxAero Mass = 0.020000Thermal Mass = 0.020000Diameter/Width = 0.070000 Length = 0.070000Height = 0.003000Item Number = 3name = PhoneSat 1.0 (Bell) Demise Altitude = 77.999074 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 name = CubeSat Structure (Bell) Demise Altitude = 73.670019 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 name = PCB (Bell) Demise Altitude = 77.471379 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 name = Nexus One (Bell) Demise Altitude = 77.450238

Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 name = Battery Holder (Bell) Demise Altitude = 77.863543 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 ***** name = Batteries (Bell) Demise Altitude = 70.180488 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 name = Fasteners (Bell) Demise Altitude = 76.383035 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 name = Quake Iridium Modem (Bell) Demise Altitude = 72.268175 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 name = Iridium Patch Antenna (Bell) Demise Altitude = 74.116121 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 name = Iridium 9602 (Bell) Demise Altitude = 75.467902 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 ****** name = Batteries Iridium (Bell) Demise Altitude = 70.180488 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 ***** name = Iridium Electronics (Bell) Demise Altitude = 76.595996 Debris Casualty Area = 0.000000 Impact Kinetic Energy = 0.000000 name = Iridium Canister (Bell) Demise Altitude = 77.094457

Requirements 4.7-1b, and 4.7-1c below are non-applicable requirements because PhoneSat 1.0 does not use controlled reentry.

4.7-1, b) **NOT APPLICABLE.** For controlled reentry, the selected trajectory shall ensure that no surviving debris impact with a kinetic energy greater than 15 joules is closer than 370 km from foreign landmasses, or is within 50 km from the continental U.S., territories of the U.S., and the permanent ice pack of Antarctica (Requirement 56627).

4.7-1 c) **NOT APPLICABLE.** For controlled reentries, the product of the probability of failure of the reentry burn (from Requirement 4.6-4.b) and the risk of human casualty assuming uncontrolled reentry shall not exceed 0.0001 (1:10,000) (Requirement 56628).

ODAR Section 8: Assessment for Tether Missions

Not applicable. There are no tethers in the PhoneSat 1.0 and PhoneSat 2.0Beta mission.

END of ODAR for PhoneSat.

Appendix A: Acronyms

ARC	Ames Research Center
Arg peri	Argument of Perigee
CDR	Critical Design Review
cm	centimeter
COTS	Commercial Off-The-Shelf (items)
DAS	Debris Assessment Software
EOM	End Of Mission
FRR	Flight Readiness Review
GEO	Geosynchronous Earth Orbit
ITAR	International Traffic In Arms Regulations
kg	kilogram
km	kilometer
LEO	Low Earth Orbit
Li-Ion	Lithium Ion
m^2	Meters squared
ml	milliliter
mm	millimeter
N/A	Not Applicable.
ODAR	Orbital Debris Assessment Report
OSMA	Office of Safety and Mission Assurance
PDR	Preliminary Design Review
PL	Payload
ISIPOD	ISIS CubeSat Deployer
PSIa	Pounds Per Square Inch, absolute
RAAN	Right Ascension of the Ascending Node
SMA	Safety and Mission Assurance
Ti	Titanium
USAF	United States Air Force
yr	year